CREATIVE LEARNING CLASSES, KARKALA K-CET DETAILED SOLUTIONS - 2021 DEPARTMENT OF MATHEMATICS SET โ C2 1. The cost and revenue functions of a product are given by ๐(๐ฅ) = 20๐ฅ + 4000 and ๐ (๐ฅ) = 60๐ฅ + 2000 respectively where x is the number of items produced and sold. The value of x to earn profit is (A) > 50 (B) > 60 (C) > 80 (D) > 40 ANS: (A) SOL: Profit function = revenue function โ cost function P(x) = (60x+2000) โ (20x+4000) P(x) = 40x โ 2000 Profit exists when P > 0 i.e., 40x โ 2000 > 0 โด x > 50 2. A student has to answer 10 questions, choosing at least 4 from each of the parts A and B. If there are 6 questions in part A and 7 in part B, then the number of ways can the student choose 10 questions is (A) 256 (B) 352 (C) 266 (D) 426 ANS: (C) SOL: ( ๐๐ช๐ . ๐๐ช๐ ) + ( ๐๐ช๐ . ๐๐ช๐ ) + ( ๐๐ช๐ . ๐๐ช๐ ) = ๐๐๐ + ๐๐๐ + ๐๐ = ๐๐๐ 3. If the middle term of the A.P is 300 then the sum of its first 51 terms is (A) 15300 (B) 14800 (C) 16500 (D) 14300 ANS: (A) SOL: Middle term is 26th term. ๐๐๐ = ๐ + (๐ โ ๐)๐ = ๐ + ๐๐๐ ๐ ๐๐ ๐๐ ๐๐ ๐บ๐๐ = ๐ [๐๐ + (๐ โ ๐)๐ ] = [๐๐ + ๐๐๐ ] = [๐{๐ + ๐๐๐ }] = [(๐)(๐๐๐)] = ๐๐๐๐๐ ๐ ๐ ๐ 4. The equation of straight line which passes through the point (๐ ๐๐๐ 3 ๐ , ๐ ๐ ๐๐3 ๐) and perpendicular to ๐ฅ ๐ ๐๐ ๐ + ๐ฆ ๐๐๐ ๐ ๐๐ = ๐ is ๐ฅ ๐ฆ (A) ๐ + ๐ = ๐ ๐๐๐ ๐ (B) ๐ฅ ๐๐๐ ๐ โ ๐ฆ ๐ ๐๐ ๐ = ๐ ๐๐๐ 2 ๐ (C) ๐ฅ ๐๐๐ ๐ + ๐ฆ ๐ ๐๐ ๐ = ๐ ๐๐๐ 2 ๐ (D) ๐ฅ ๐๐๐ ๐ โ ๐ฆ ๐ ๐๐ ๐ = โ๐ ๐๐๐ 2 ๐ ANS: (B) SOL: Line perpendicular to ๐ ๐๐๐ ๐ฝ + ๐ ๐๐๐ ๐ ๐๐ฝ = ๐ is given by ๐ ๐๐๐๐๐ ๐ฝ โ ๐๐๐๐ ๐ฝ = ๐โฆโฆโฆโฆ(1) (๐) passes through (๐ ๐๐๐๐ ๐ฝ , ๐ ๐๐๐๐ ๐ฝ). Then (๐ ๐๐๐๐ ๐ฝ)๐๐๐๐๐ ๐ฝ โ (๐ ๐๐๐๐ ๐ฝ)๐๐๐ ๐ฝ = ๐ ๐๐๐๐ ๐ฝ ๐๐๐๐ ๐ฝ ๐๐๐๐๐ฝ โ ๐ = ๐( โ ) = ๐( ) ๐๐๐๐ฝ ๐๐๐๐ฝ ๐๐๐๐ฝ. ๐๐๐๐ฝ By substituting in (1) we get ๐ ๐๐๐ ๐ฝ โ ๐ ๐๐๐ ๐ฝ = ๐ ๐๐๐ ๐ ๐ฝ 5. The mid points of the sides of a triangle are (1, 5, -1) (0, 4, -2) and (2, 3, 4) then centroid of the triangle 1 1 (A) (1, 4, 3) (B) (1,4, 3) (C) (-1, 4, 3) (D) (3 , 2,4) ANS: (B) ๐+๐+๐ ๐+๐+๐ โ๐โ๐+๐ ๐ SOL: centroid= ( , , ) = (๐, ๐, ๐) ๐ ๐ ๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA 6. Consider the following statements: ๐๐ฅ 2 +๐๐ฅ+๐ Statement 1 : ๐๐๐ ๐๐ฅ 2 +๐๐ฅ+๐ is 1 (where ๐ + ๐ + ๐ = 0) ๐ฅโ1 1 1 + 1 ๐ฅ 2 Statement 2 : ๐๐๐ is ๐ฅโโ2 ๐ฅ+2 4 (A) Only statement 2 is true (B) Only statement 1 is true (C) Both statements 1 and 2 are true (D) Both statements 1 and 2 are false ANS: (B) ๐๐๐ +๐๐+๐ SOL: Statement 1: ๐ฅ๐ข๐ฆ ๐๐๐ +๐๐+๐ = ๐ by putting ๐ = ๐. It is true ๐โ๐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ Statement 2: ๐ฅ๐ข๐ฆ = ๐ฅ๐ข๐ฆ = โ ๐ โ ๐. Thus, it is not true. ๐โโ๐ ๐+๐ ๐โโ๐ ๐๐ ๐ ๐ 7. If a and b are fixed non-zero constants, then the derivative of ๐ฅ 4 โ ๐ฅ 2 + ๐๐๐ ๐ฅ is ๐๐ + ๐๐ โ ๐ where โ2 โ4 2 (A) ๐ = 4๐ฅ 3 ; ๐ = ; ๐ = ๐ ๐๐ ๐ฅ (B) ๐ = ; ๐ = ๐ฅ 3 ; ๐ = ๐ ๐๐ ๐ฅ ๐ฅ3 ๐ฅ5 โ4 โ2 2 (C) ๐ = ;๐ = ; ๐ = โ ๐ ๐๐ ๐ฅ (D) ๐ = 4๐ฅ 3 ; ๐ = ๐ฅ 3 ; ๐ = โ ๐ ๐๐ ๐ฅ ๐ฅ5 ๐ฅ3 ANS: (B) ๐ ๐ SOL: ๐ ๐ = โ๐๐๐โ๐ + ๐๐๐โ๐ โ ๐๐๐ ๐. โ๐ ๐ Comparing with ๐๐ + ๐๐ โ ๐ we get, ๐ = ; ๐ = ๐๐ ; ๐ = ๐๐๐ ๐ ๐๐ 8. The Standard Deviation of the numbers 31, 32, 33 โฆ. 46, 47 is 17 472 โ1 (A) โ (B) โ (C) 2โ6 (D) 4โ3 12 12 ANS: (C) SOL: Standard Deviation of the numbers 31, 32, 33 โฆ. 46, 47 is same as standard deviation ๐๐ โ๐ ๐๐๐ โ๐ of 1, 2, 3, โฆ, 16, 17 which is given by โ =โ = โ๐๐ = ๐โ๐ ๐๐ ๐๐ 9. If P(A) = 0.59, P(B) = 0.30 and P(A โฉ B) = 0.21 then ๐(๐ดโฒ โฉ ๐ตโฒ ) = (A) 0.11 (B) 0.38 (C) 0.32 (D) 0.35 ANS: (C) SOL: ๐ท(๐จโฒ โฉ ๐ฉโฒ ) = ๐ท[(๐จ โช ๐ฉ)โฒ ] = ๐ โ ๐ท(๐จ โช ๐ฉ) = ๐ โ ๐ท(๐จ) โ ๐ท(๐ฉ) + ๐ท(๐จ โฉ ๐ฉ) = ๐ โ ๐. ๐๐ โ ๐. ๐ + ๐. ๐๐ = ๐. ๐๐ 2๐ฅ ; ๐ฅ > 3 10. ๐: ๐ โ ๐ defined by ๐(๐ฅ) = {๐ฅ 2 ; 1 < ๐ฅ โค 3 then f (-2) + f (3) + f (4) is 3๐ฅ ; ๐ฅ โค 1 (A) 14 (B) 9 (C) 5 (D) 11 ANS: (D) SOL: ๐(โ๐) + ๐(๐) + ๐(๐) = ๐(โ๐) + ๐๐ + ๐(๐) = โ๐ + ๐ + ๐ = ๐๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA 2๐ฅ 11. Let A = {x: x โ R ; x is not a positive integer}. Define f : A โถ R as ๐(๐ฅ) = ๐ฅโ1, then f is (A) Injective but not surjective (B) surjective but not injective (C) Bijective (D) neither injective nor surjective ANS: (A) ๐๐ ๐๐ SOL: for ๐, ๐ โ ๐จ, ๐(๐) = ๐(๐) โ ๐โ๐ = ๐โ๐ โ ๐๐๐ โ ๐๐ = ๐๐๐ โ ๐๐ โ ๐ = ๐. Thus, f is injective. ๐ โ ๐น but 2 as no pre image in A. thus, f is not surjective. 12. The function ๐(๐ฅ) = โ3 ๐ ๐๐ 2 ๐ฅ โ ๐๐๐ 2 ๐ฅ + 4is one-one in the interval โ๐ ๐ ๐ ๐ โ๐ ๐ ๐ ๐ (A) [ 6 , 3 ] (B) ( 6 , โ 3 ] (C) [ 2 , 2 ] (D) [โ 6 , โ 3 ) ANS: (A) โ๐ ๐ SOL: โ๐ ๐๐๐ ๐ ๐ โ ๐๐๐ ๐ ๐ + ๐ = ๐๐๐ ๐ ๐ โ ๐ ๐๐๐ ๐ ๐ + ๐ ๐ ๐ ๐ = ๐๐๐๐๐. ๐๐๐ ๐ โ ๐๐๐๐๐. ๐๐๐ ๐ + ๐ ๐ = ๐๐๐ (๐๐ โ ) + ๐ ๐ ๐ ๐ ๐ ๐ ๐ Which will be one-one if โ ๐ โค (๐๐ โ ๐ ) โค โ โ๐ โค ๐ โค ๐ ๐ 1 13. Domain of the function ๐(๐ฅ) = where [x] is greatest integer โค x is โ[๐ฅ]2 โ[๐ฅ]โ6 (A) (-โ, -2) โช [4, โ] (B) (-โ, -2) โช [3, โ] (C) [-โ, -2] โช [4, โ] (D) [-โ, -2] โช (3, โ) ANS: (A) SOL: [๐]๐ โ [๐] โ ๐ > ๐ โ ([๐] + ๐). ([๐] โ ๐) > ๐ โ [๐] < โ๐ ๐๐ [๐] > ๐ โ ๐ โ (โโ, โ๐) โช [๐, โ) ๐ 14. ๐๐๐ [๐๐๐ก โ1 ( โ โ3) + 6 ] = 1 (A) 0 (B) 1 (C) (D) -1 โ2 ANS: (D) ๐ ๐ ๐ SOL: ๐๐๐ [๐ โ ๐๐๐โ๐ (โ3) + ๐ ] = ๐๐๐ [๐ โ ๐ + ๐ ] = ๐๐๐ ๐ = โ๐ 1 5๐ โ3 15. ๐ก๐๐โ1 [ ๐ ๐๐ ] ๐ ๐๐โ1 [๐๐๐ (๐ ๐๐โ1 )] = โ3 2 2 ๐ ๐ (A) 0 (B) 6 (C) 3 (D) ฯ *** DATA INSUFFICIENT 2 1 1 โ2 1 16. If ๐ด = [ ] ๐ต = [3 2]then (๐ด๐ต)โฒ is equal to 2 1 3 1 1 โ3 โ2 โ3 10 โ3 7 โ3 7 (A) [ ] (B) [ ] (C) [ ] (D) [ ] 10 7 โ2 7 10 2 10 โ2 ANS: (B) HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA ๐ ๐ ๐ โ๐ ๐ โ๐ ๐๐ SOL: (๐จ๐ฉ)โฒ = [[ ] [๐ ๐]] โฒ = [ ] ๐ ๐ ๐ โ๐ ๐ ๐ ๐ 17. Let M be 2 x 2 symmetric matrix with integer entries, then M is invertible if (A) The first column of M is the transpose of second row of M (B) The second row of M is the transpose of first column of M (C) M is a diagonal matrix with non-zero entries in the principal diagonal (D) The product of entries in the principal diagonal of M is the product of entries in the other diagonal. ANS: (C) SOL: A diagonal matrix with non-zero entries is non-singular. Thus, it is invertible. 18. If A and B are matrices of order 3 and |A| = 5, |B| = 3 then |3AB| is (A) 425 (B) 405 (C) 565 (D) 585 ANS: (B) SOL: |๐๐จ๐ฉ| = ๐๐ . |๐จ|. |๐ฉ| = (๐๐)(๐)(๐) = ๐๐๐ 19. If A and B are invertible matrices then which of the following is not correct? (A) adj A = |A| A-1 (B) det (A-1) = [det (A)]-1 (C) (AB)-1 = B-1A-1 (D) (A + B)-1 = (B-1 + A-1) ANS: (D) SOL: (A + B)-1 = (B-1 + A-1) is false. ๐๐๐ ๐ฅ 1 0 20. If ๐(๐ฅ) = | 0 2 ๐๐๐ ๐ฅ 3 | then ๐๐๐๐(๐ฅ) = ๐ฅโ๐ 0 1 2 ๐๐๐ ๐ฅ (A) -1 (B) 1 (C) 0 (D) 3 ANS: (A) SOL: ๐(๐) = (๐๐๐ ๐). (๐๐๐๐๐ ๐ โ ๐) Then, ๐ฅ๐ข๐ฆ ๐(๐) = ๐ฅ๐ข๐ฆ(๐๐๐ ๐). (๐๐๐๐๐ ๐ โ ๐) ๐โ๐ ๐โ๐ = (๐๐๐ ๐ )(๐. ๐๐๐๐ ๐ โ ๐) = โ๐ 1 2 3 3 2 21. If ๐ฅ โ 2๐ฅ โ 9๐ฅ + 18 = 0 and ๐ด = |4 ๐ฅ 6| then the maximum value of A is 7 8 9 (A) 96 (B) 36 (C) 24 (D) 120 ANS: (A) SOL: Roots of ๐๐ โ ๐๐๐ โ ๐๐ + ๐๐ = ๐ are ๐, ๐, โ๐. ๐ ๐ ๐ ๐จ = |๐ ๐ ๐| = โ๐๐๐ + ๐๐โฆโฆโฆโฆ(1) ๐ ๐ ๐ (๐) attains maximum if ๐ = โ๐. Thus maximum of A is 96. 3 22. At x = 1, the function ๐(๐ฅ) = {๐ฅ โ 1 1 < ๐ฅ < โ is ๐ฅโ1 โโ < ๐ฅ โค 1 (A) Continuous and differentiable (B) continuous and non-differentiable (C) Discontinuous and differentiable (D) Discontinuous and non-differentiable ANS: (B) HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA SOL: ๐ฅ๐ข๐ฆ+(๐๐ โ ๐) = ๐ = ๐ฅ๐ข๐ฆโ (๐ โ ๐). Thus, f is continuous. ๐โ๐ ๐โ๐ โฒ (๐) ๐๐, ๐ < ๐ < โ Now, ๐ ={ ๐, โ โ < ๐ โค ๐ โ ๐โฒ (๐+ ) = ๐(๐) = ๐ and ๐โฒ (๐โ ) = ๐, which are unequal. Thus, f is not differentiable. ๐๐ฆ 23. If ๐ฆ = (๐๐๐ ๐ฅ 2 )2 , then ๐๐ฅ is equal to (A) โ4๐ฅ ๐ ๐๐ 2 ๐ฅ 2 (B) โ๐ฅ ๐ ๐๐ ๐ฅ 2 (C) โ2๐ฅ ๐ ๐๐ 2 ๐ฅ 2 (D) โ๐ฅ ๐๐๐ 2 ๐ฅ 2 ANS: (C) ๐ ๐ SOL: ๐ ๐ = ๐(๐๐๐๐๐ ). (โ๐๐๐๐๐ ). (๐๐) = โ๐๐. ๐๐๐ ๐๐๐ ๐ 24. For constant a, ๐๐ฅ (๐ฅ ๐ฅ + ๐ฅ ๐ + ๐ ๐ฅ + ๐๐ ) is (A) ๐ฅ ๐ฅ (1 + ๐๐๐ ๐ฅ) + ๐๐ฅ ๐โ1 (B) ๐ฅ ๐ฅ (1 + ๐๐๐ ๐ฅ) + ๐๐ฅ ๐โ1 + ๐ ๐ฅ ๐๐๐ ๐ (C) ๐ฅ ๐ฅ (1 + ๐๐๐ ๐ฅ) + ๐๐ (1 + ๐๐๐ ๐ฅ) (D) ๐ฅ ๐ฅ (1 + ๐๐๐ ๐ฅ) + ๐๐ (1 + ๐๐๐ ๐) + ๐๐ฅ ๐โ1 ANS: (B) SOL: Given ๐ is a constant. ๐ ๐ ๐ Shortcut formula: ๐ = ๐๐ โ ๐ ๐ = ๐๐ (๐ (๐โฒ ) + ๐โฒ (๐๐๐๐)) ๐ (๐๐ ) ๐ โ = (๐๐ ) (๐ (๐) + (๐. ๐๐๐๐)) = ๐๐ (๐ + ๐๐๐๐) ๐ ๐ ๐ (๐๐ ) ๐ (๐๐ ) ๐ (๐๐ ) Also, = ๐. ๐๐โ๐ , = ๐๐ . ๐๐๐๐, =๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ โด (๐ฅ ๐ฅ + ๐ฅ ๐ + ๐ ๐ฅ + ๐๐ ) = ๐๐ (๐ + ๐๐๐๐) + ๐. ๐ ๐โ๐ + ๐๐ . ๐๐๐๐ ๐๐ฅ 25. Consider the following statements: ๐๐ฆ ๐๐๐10 ๐ 1 Statement 1: If ๐ฆ = ๐๐๐10 ๐ฅ + ๐๐๐๐ ๐ฅ then ๐๐ฅ = +๐ฅ ๐ฅ ๐ ๐๐๐ ๐ฅ ๐ ๐๐๐ ๐ฅ Statement 2: ๐๐ฅ (๐๐๐10 ๐ฅ) = ๐๐๐ 10 and (๐๐๐๐ ๐ฅ) = ๐๐๐ ๐ ๐๐ฅ (A) Statement 1 is true; statement 2 is false (B) Statement 1 is false; statement 2 is true (C) Both statements 1 and 2 are true (D) Both statements 1 and 2 are false ANS: (A) ๐ ๐ ๐ (๐ฅ๐จ๐ ๐๐ ๐) ๐ (๐ฅ๐จ๐ ๐ ๐) SOL: Statement 1: ๐ ๐ = + ๐ ๐ ๐ ๐ ๐ ๐ (๐ฅ๐จ๐ ๐ ๐) ๐ = ๐ฅ๐จ๐ . +๐ ๐ ๐๐ ๐ ๐ ๐ ๐ ๐ = ๐ฅ๐จ๐ .๐ + ๐ ๐ ๐๐ ๐ฅ๐จ๐ ๐๐ ๐ ๐ = + ๐ , which is true. ๐ By Statement 1, we can observe that the terms in Statement 2 are not the required derivatives, hence, false statement. HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA ๐ 26. If the parametric equation of a curve is given by ๐ฅ = ๐๐๐ ๐ + ๐๐๐ tan 2 and ๐ฆ = sin๐, then the points ๐๐ฆ for which = 0 are given by ๐๐ฅ ๐๐ ๐ (A) ๐ = ,๐ โ ๐ง (B) ๐ = (2๐ + 1) 2 , ๐ โ ๐ง 2 (C) ๐ = (2๐ + 1)๐, ๐ โ ๐ง (D) ๐ = ๐๐, ๐ โ ๐ง ANS: (D) ๐ ๐ SOL: ๐ = ๐๐๐ ๐ฝ โ ๐ ๐ฝ = ๐๐๐ ๐ฝ ๐ฝ ๐ ๐ ๐ ๐ฝ ๐ ๐ = ๐๐๐ ๐ฝ + ๐๐๐ tan ๐ โ ๐ ๐ฝ = (โ๐๐๐ ๐ฝ) + ๐ฝ . ๐๐๐๐ ๐ . ๐ ๐๐๐ ๐ ๐ = (โ๐๐๐ ๐ฝ) + ๐ฝ ๐ฝ ๐๐๐๐ ๐๐๐ ๐ ๐ ๐ = (โ๐๐๐ ๐ฝ) + ๐๐๐๐ฝ โ๐๐๐๐ ๐ฝ+๐ ๐๐๐๐ ๐ฝ = = ๐๐๐๐ฝ ๐๐๐๐ฝ ๐ ๐ ๐๐๐๐ฝ Now, ๐ ๐ = ๐๐๐๐ ๐ฝ . ๐๐๐๐ฝ = ๐๐๐๐ฝ ๐ ๐ = ๐ โน ๐๐๐ ๐ฝ = ๐ โน ๐ฝ = ๐๐ , ๐ โ ๐ ๐ ๐ ๐๐ฆ 27. If ๐ฆ = (๐ฅ โ 1)2 (๐ฅ โ 2)3 (๐ฅ โ 3)5 then ๐๐ฅ at ๐ฅ = 4 is equal to (A) 108 (B) 54 (C) 36 (D) 516 ANS: (D) SOL: Using product rule ๐ ๐ = ๐(๐ โ ๐)(๐ โ ๐)๐ (๐ โ ๐)๐ + (๐ โ ๐)๐ . ๐. (๐ โ ๐)๐ (๐ โ ๐)๐ ๐ ๐ +(๐ โ ๐)๐ (๐ โ ๐)๐ . ๐. (๐ โ ๐)๐ ๐ ๐ At ๐ = ๐, we get, ๐ ๐ = [๐. ๐. ๐. ๐] + [๐. ๐. ๐. ๐] + [๐. ๐. ๐. ๐] = ๐๐๐ ๐ก2 ๐ก 28. A particle starts from rest and its angular displacement (in radians) is given by ๐ = 20 + 5. If the angular velocity at the end of t = 4 is k, then the value of 5k is (A) 0.6 (B) 5 (C) 5k (D) 3 ANS: (D) SOL: Differentiating ๐ฝ w.r.t t ๐ ๐ฝ ๐๐ ๐ โ = ๐๐ + ๐ ๐ ๐ ๐ ๐ฝ ๐ at ๐ = ๐ equals ๐ = ๐ ๐ ๐ ๐ ๐๐๐๐, ๐๐ = ๐ ( ) = ๐ ๐ 3 29. If the parabola ๐ฆ = ๐ผ๐ฅ 2 โ 6๐ฅ + ๐ฝ passes through the point (0, 2) and has its tangent at ๐ฅ = 2 parallel to x axis, then (A) ๐ผ = 2, ๐ฝ = โ2 (B) ๐ผ = โ2, ๐ฝ = 2 (C) ๐ผ = 2, ๐ฝ = 2 (D) ๐ผ = โ2, ๐ฝ = โ2 ANS: (C) SOL: ๐ = ๐ถ๐๐ โ ๐๐ + ๐ท passes through (๐, ๐) โ ๐ = ๐ท ๐ ๐ ๐ [๐ ๐] ๐ = ๐(๐ฉ๐๐ซ๐๐ฅ๐ฅ๐๐ฅ ๐ญ๐จ ๐ฑ โ ๐๐ฑ๐ข๐ฌ) โ ๐๐ถ (๐) โ ๐ = ๐ โ ๐ถ = ๐ ๐= ๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA 30. The function ๐(๐ฅ) = ๐ฅ 2 โ 2๐ฅ is strictly decreasing in the interval (A) (โโ, 1) (B) (1, โ) (C) R (D) (โโ, โ) ANS: (A) SOL: ๐โฒ (๐) < ๐ โ ๐๐ โ ๐ < ๐ โ๐<๐ โ ๐ โ (โโ, ๐) 31. The maximum slope of the curve ๐ฆ = โ๐ฅ 3 + 3๐ฅ 2 + 2๐ฅ โ 27 is (A) 1 (B) 23 (C) 5 (D) โ23 ANS: (C) ๐ ๐ SOL: ๐ ๐ = โ๐๐๐ + ๐๐ + ๐ ๐ ๐ ๐ โ = โ๐๐ + ๐ = โ๐(๐ โ ๐) ๐ ๐๐ ๐ ๐ ๐ Now, ๐ ๐๐ = ๐ โ ๐ = ๐ ๐ ๐ ๐ ๐ ๐ = โ๐ < ๐, ๐๐๐ ๐ = ๐. Thus, maximum of ๐ ๐ is attained at ๐ = ๐ ๐ ๐๐ ๐ ๐ โด [๐ ๐] = โ๐ + ๐ + ๐ = ๐ ๐=๐ ๐ฅ 3 ๐ ๐๐( ๐ก๐๐โ1 (๐ฅ 4 )) 32. โซ dx is equal to 1+๐ฅ 8 โ ๐๐๐ ( ๐ก๐๐โ1 (๐ฅ 4 )) ๐๐๐ ( ๐ก๐๐โ1 (๐ฅ 4 )) (A) +๐ถ (B) +๐ถ 4 4 โ ๐๐๐ ( ๐ก๐๐โ1 (๐ฅ 3 )) ๐ ๐๐( ๐ก๐๐โ1 (๐ฅ 4 )) (C) +๐ถ (D) +๐ถ 3 4 ANS: (A) ๐๐ ๐๐๐( ๐๐๐โ๐ (๐๐ )) ๐๐ ๐๐๐( ๐๐๐โ๐ (๐๐ )) SOL: ๐ฐ = โซ ๐ ๐ = โซ ๐ ๐ ๐ ๐+๐๐ ๐+(๐๐ ) ๐๐ ๐ Taking ๐๐๐โ๐ ๐๐ = ๐ โ ๐ ๐ ๐ = ๐ ๐ ๐ ๐+(๐๐ ) ๐ โ ๐ฐ = ๐ โซ ๐๐๐ ๐ ๐ ๐ ๐ = โ ๐ ๐๐๐ ๐ + ๐ช ๐ = โ ๐ ๐๐๐ (๐๐๐โ๐ ๐๐ ) + ๐ช ๐ฅ 2 ๐๐ฅ 33. The value of โซ โ๐ฅ 6 is equal to +๐6 (A) ๐๐๐|๐ฅ 3 + โ๐ฅ 6 + ๐6 | + ๐ถ (B) ๐๐๐|๐ฅ 3 โ โ๐ฅ 6 + ๐5 | + ๐ถ 1 1 (C) 3 ๐๐๐|๐ฅ 3 + โ๐ฅ 6 + ๐6 | + ๐ถ (D) ๐๐๐|๐ฅ 3 โ โ๐ฅ 6 + ๐6 | + ๐ถ 3 ANS: (C) ๐๐ ๐ ๐ ๐๐ ๐ ๐ SOL: I=โซ =โซ โ๐๐ +๐๐ โ(๐๐ )๐ +(๐๐ )๐ ๐ Taking ๐๐ = ๐ โ ๐๐ ๐ ๐ = ๐ ๐ ๐ ๐ ๐ ๐ ๐ โ๐ฐ=โซ = ๐๐๐ |๐ + โ๐๐ + ๐๐ | + ๐ช = ๐๐๐ |๐๐ + โ๐๐ + ๐๐ | + ๐ช โ๐๐ + (๐๐ )๐ ๐ ๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA ๐ฅ๐ ๐ฅ ๐๐ฅ 34. The value of โซ (1+๐ฅ)2 is equal to (A) ๐ ๐ฅ (1 + ๐ฅ) + ๐ (B) ๐ ๐ฅ (1 + ๐ฅ 2 ) + ๐ ๐๐ฅ (C) ๐ ๐ฅ (1 + ๐ฅ)2 + ๐ (D) +๐ 1+๐ฅ ANS: (D) ๐๐๐ ๐ ๐ (๐+๐โ๐)๐๐ SOL: ๐ฐ = โซ (๐+๐)๐ = โซ (๐+๐)๐ ๐ ๐ ๐+๐ ๐ = โซ ((๐+๐)๐ โ (๐+๐)๐ ) ๐๐ ๐ ๐ ๐ ๐ = โซ (๐+๐ โ (๐+๐)๐ ) ๐๐ ๐ ๐ ๐ = ๐๐ (๐+๐) + ๐ช [๐๐๐๐๐ โซ ๐๐ (๐(๐) + ๐โฒ (๐))๐ ๐ = ๐๐ ๐(๐) + ๐ช] 1+๐ ๐๐ ๐ฅ 35. The value of โซ ๐ ๐ฅ [1+๐๐๐ ๐ฅ] ๐๐ฅ is equal to ๐ฅ (A) ๐ ๐ฅ ๐ก๐๐ 2 + ๐ (B) ๐ ๐ฅ ๐ก๐๐ ๐ฅ + ๐ (C) ๐ ๐ฅ (1 + ๐๐๐ ๐ฅ) + ๐ (D) ๐ ๐ฅ (1 + ๐ ๐๐ ๐ฅ) + ๐ ANS: (A) ๐+๐๐๐ ๐ ๐ ๐๐๐๐ SOL: ๐ฐ = โซ ๐๐ [๐+๐๐๐ ๐] ๐ ๐ = โซ ๐๐ (๐+๐๐๐๐ + ๐+๐๐๐๐) ๐ ๐ ๐ ๐ ๐ = โซ ๐๐ (๐ ๐๐๐๐ ๐ + ๐๐๐ ๐) ๐ ๐ ๐ = ๐๐ . ๐๐๐ ๐ + ๐ช ๏ฐ 36. If I n = ๏ฒ tan n 4 x dx where n is positive integer then ๐ผ10 + ๐ผ8 is equal to 0 1 1 1 (A) 9 (B) 7 (C) 8 (D) 9 ANS: (D) ๏ฐ ๐ /๐ SOL: I n = ๏ฒ tan ๐๐๐๐โ๐ ๐. ๐๐๐๐ ๐๐ ๐ n 4 x dx = โซ๐ 0 ๐ /๐ ๐ฐ๐ = โซ๐ ๐๐๐๐โ๐ ๐. (๐๐๐๐ ๐ โ ๐)๐ ๐ ๐ /๐ ๐ฐ๐ = โซ๐ ๐๐๐๐โ๐ ๐. ๐๐๐๐ ๐. ๐ ๐ โ ๐ฐ๐โ๐ ๐ /๐ ๐ฐ๐ + ๐ฐ๐โ๐ = โซ๐ ๐๐๐๐โ๐ ๐. ๐๐๐๐ ๐. ๐ ๐ Taking ๐๐๐๐ = ๐ โ ๐๐๐๐ ๐๐ ๐ = ๐ ๐ and ๐ = ๐ ๐๐ ๐ ๐ ๐ ๐๐โ๐ ๐ โ ๐ฐ๐ + ๐ฐ๐โ๐ = โซ๐ ๐๐โ๐ ๐ ๐ = [ ๐โ๐ ] = ๐โ๐ ๐ ๐ ๐ Now, ๐ฐ๐๐ + ๐ฐ๐ = = ๐๐โ๐ ๐ 4042 โ๐ฅ๐๐ฅ 37. The value of โซ0 is equal to โ๐ฅ+โ4042โ๐ฅ (A) 4042 (B) 2021 (C) 8084 (D) 1010 ANS: (B) ๐ ๐(๐) ๐โ๐ SOL: โซ๐ ๐ ๐ = ๐(๐)+๐(๐+๐โ๐) ๐ ๐๐๐๐ โ๐๐ ๐ ๐๐๐๐โ๐ โ โซ๐ = = ๐๐๐๐ โ๐+โ๐๐๐๐โ๐ ๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA 38. The area of the region bounded by ๐ฆ = โ16 โ ๐ฅ 2 and x- axis is (A) 8 square units (B) 20ฯ square units (C) 16ฯ square units (D) 256 ฯ square units ANS: (A) SOL: ๐ = โ๐๐ โ ๐๐ can be expressed as ๐๐ + ๐๐ = ๐๐ whose area Is given by ๐ ๐๐ . ๐ ๐ Required area = ๐ (๐ ๐๐ ) = ๐ (๐๐๐ ) = ๐๐ sq. units (Given as 8 sq. units) ๐ฅ2 ๐ฆ2 39. If the area of the Ellipse is 25 + ๐2 = 1 ๐๐ 20๐ square units, then ๐ is (A) ยฑ4 (B) ยฑ3 (C) ยฑ2 (D) ยฑ1 ANS: (A) SOL: Area of ellipse is given by ๐ ๐๐. Here, ๐ = ๐, ๐ = ๐ โ ๐ (๐)(๐) = ๐๐๐ โ ๐ฉ๐จ๐ฌ๐ฌ๐ข๐๐ฅ๐ ๐ฏ๐๐ฅ๐ฎ๐๐ฌ ๐จ๐ ๐ ๐๐ซ๐ ยฑ ๐ 40. Solution of Differential Equation xdy โ ydx = 0 represents (A) A rectangular Hyperbola (B) Parabola whose vertex is at origin (C) Straight line passing through origin (D) A circle whose centre is origin ANS: (C) SOL: xdy โ ydx = ๐ โ ๐๐ ๐ = ๐๐ ๐ ๐ ๐ ๐ ๐ โโซ =โซ ๐ ๐ โ ๐๐๐ ๐ = ๐๐๐ ๐ + ๐๐๐ ๐ช โ ๐๐๐ ๐ = ๐๐๐ ๐๐ช โ ๐ = ๐ช๐, a straight line passing through the origin. ๐๐ฆ ๐ฆ +1 41. The number of solutions of ๐๐ฅ = when ๐ฆ(1) = 2 is ๐ฅโ1 (A) three (B) one (C) infinite (D) two ANS: (C) ๐ ๐ ๐ +๐ ๐ ๐ ๐ ๐ SOL: ๐ ๐ = โ โซ ๐+๐ = โซ ๐โ๐ ๐โ๐ โ ๐๐๐ (๐ + ๐) = ๐๐๐ (๐ โ ๐) โ ๐๐๐ ๐ช ๐โ๐ ๐โ๐ โ ๐๐๐ ๐ช = ๐๐๐ (๐+๐) โ ๐ช = ๐+๐โฆโฆ(1) Substituting ๐ = ๐, ๐ = ๐ in (1), we get ๐ช = ๐ โ ๐ = ๐, only one solution. 42. A vector ๐โ makes equal acute angles on the coordinate axis. Then the projection of vector ๐โโ = 5๐ฬ + 7๐ฬ โ ๐ฬ on aโ is 11 11 4 3 (A) 15 (B) (C) 5 (D) 5โ3 โ3 ANS: (B) SOL: Equal acute angles can be ๐ถ = ๐ท = ๐ธ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA ๐ ๐ ๐ ๐ โ ๐๐๐๐๐ ๐ถ = ๐ โ ๐๐๐๐ถ = โโ = . thus, ๐ ๐ฬ + ๐ฬ + ฬ ๐ โ๐ โ๐ โ๐ โ๐ ๐ ๐ ๐ + โ ๐๐ Projection of โ๐โ on ๐ โโ = โ๐โ. ๐ ฬ = โ๐ โ๐ โ๐ = ๐ โ๐ 43. The diagonals of a parallelogram are the vectors 3๐ฬ + 6๐ฬ โ 2๐ฬ and โ ๐ฬ โ 2๐ฬ โ 8๐ฬ then the length of the shorter side of parallelogram is (A)2โ3 (B)โ14 (C) 3โ5 (D)4โ3 *** DATA INSUFFICIENT 44. If ๐โ. bโโ = 0 and aโ + bโโ makes an angle 600 with ๐โ then โโโโโโ = 2|๐| (A)|๐| โโโโโโ โโโโโโ = โโโโโโ (B) 2|๐| |๐| (C) โโโโโโ |๐| = โ3 โโโโโโ |๐| (D) โ3 โโโโโโ |๐| = โโโโโโ |๐| ANS: (D) SOL: โโ| |๐ โโ| |๐ ๐๐๐๐๐ยฐ = |๐โโ| โ โ๐ = |๐โโ| โ๐โ 60ยฐ โ โ๐ โโโโโโ |๐| = โโโโโโ |๐| โโ ๐ 45. If the area of the parallelogram with ๐โ and ๐โโ as two adjacent sides is 15 sq. units then the area of the parallelogram having 3๐โ + 2๐โโ and ๐โ + 3๐โโ as two adjacent sides in sq. units is (A) 45 (B)75 (C)105 (D)120 ANS: (C) โโ ร โ๐โ| = ๐๐. Now, |(๐๐ SOL: |๐ โโ + ๐๐ โโ) ร (๐ โโ + ๐๐ โโ)| = |๐(๐ โโ) + ๐(๐ โโ ร ๐ โโ ร ๐ โโ)| = |๐(๐โโ ร ๐โโ) โ ๐(๐ โโ)| โโ ร ๐ โโ ร ๐ = ๐|๐ โโ| = ๐ โ ๐๐ = ๐๐๐ 46. The equation of the line joining the points (โ3,4,11) and (1, โ2,7) is ๐ฅ+3 ๐ฆโ4 ๐งโ11 ๐ฅ+3 ๐ฆโ4 ๐งโ11 (A) = = (B) = = 2 3 4 โ2 3 2 ๐ฅ+3 ๐ฆ+4 ๐ง+11 ๐ฅ+3 ๐ฆ+4 ๐ง+11 (C) = = (D) = = โ2 3 4 2 โ3 2 ANS: (B) ๐+๐ ๐โ๐ ๐โ๐๐ ๐+๐ ๐โ๐ ๐โ๐๐ SOL: ๐+๐ = โ๐โ๐ = ๐โ๐๐ โ = = ๐ โ๐ โ๐ ๐+๐ ๐โ๐ ๐โ๐๐ โ = = ๐ โ๐ โ๐ ๐+๐ ๐โ๐ ๐โ๐๐ โ = = โ๐ ๐ ๐ โ3 1 โ3 โ3 1 โโ3 47. The angle between the lines whose direction cosines are ( 4 , 4 , ) and ( 4 , 4 , ) is 2 2 ๐ ๐ ๐ (A)๐ (B)2 (C) 3 (D) 4 ANS: (C) โ3 โ3 ๐ ๐ โ3 โ3 ๐ SOL: If direction cosines are given, then ๐๐๐ ๐ฝ = |( ๐ . ) + (๐ . ๐) โ(๐ . )| =๐ ๐ ๐ โ๐ ๐ ๐ โ ๐ฝ = ๐๐๐ (๐) = ๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA 48. If a plane meets the coordinate axes at A, B and C in such a way that the centroid of triangle ABC is at the point (1, 2, 3) then the equation of the plane is ๐ฅ ๐ฆ ๐ง ๐ฅ ๐ฆ ๐ง (A) 1 + 2 + 3 = 1 (B) 3 + 6 + 9 = 1 ๐ฅ ๐ฆ ๐ง 1 ๐ฅ ๐ฆ ๐ง (C) 1 + 2 + 3 = 3 (D) 1 โ 2 + 3 = โ1 ANS: (B) ๐ ๐ ๐ SOL: Centroid (๐, ๐, ๐) = (๐ , ๐ , ๐) โ ๐ = ๐, ๐ = ๐, ๐ = ๐ ๐ฑ ๐ฒ ๐ณ ๐๐ช๐ฎ๐๐ญ๐ข๐จ๐ง ๐จ๐ ๐ฉ๐ฅ๐๐ง๐ ๐ข๐ง ๐ข๐ง๐ญ๐๐ซ๐๐๐ฉ๐ญ ๐๐จ๐ซ๐ฆ ๐ข๐ฌ ๐ + ๐ + ๐ = ๐ ๐ ๐ ๐ โ๐+๐+๐ =๐ 49. The area of the quadrilateral ABCD, when A (0, 4, 1), B (2, 3, -1), C (4, 5, 0) and D (2, 6, 2) is equal to (A) 9 sq. units (B) 18 sq. units (C) 27 sq. units (D) 81 sq. units ANS: (A) SOL: ๐จ๐ฉ ฬ and ๐ฉ๐ช โโโโโโโ = ๐๐ฬ โ ๐ฬ โ ๐๐ ฬ โโโโโโโ = ๐๐ฬ + ๐๐ฬ + ๐ ๐ฬ ๐ฬ ๐ฬ โโโโโโโ ร ๐ฉ๐ช Required area = |๐จ๐ฉ โโโโโโโ| = ||๐ โ๐ ฬ | = โ๐๐ = ๐ โ๐|| = |๐๐ฬ โ ๐๐ฬ + ๐๐ ๐ ๐ ๐ 50. The shaded region is the solution set of the inequalities (A) 5๐ฅ + 4๐ฆ โฅ 20, ๐ฅ โค 6, ๐ฆ โฅ 3, ๐ฅ โฅ 0, ๐ฆ โฅ 0 (B) 5๐ฅ + 4๐ฆ โค 20, ๐ฅ โค 6, ๐ฆ โฅ 3, ๐ฅ โฅ 0, ๐ฆ โฅ 0 (C) 5๐ฅ + 4๐ฆ โฅ 20, ๐ฅ โค 6, ๐ฆ โค 3, ๐ฅ โฅ 0, ๐ฆ โฅ 0 (D) 5๐ฅ + 4๐ฆ โฅ 20, ๐ฅ โฅ 6, ๐ฆ โค 3, ๐ฅ โฅ 0, ๐ฆ โฅ 0 ANS: (C) SOL: Shaded region is (i) above the line ๐๐ + ๐๐ = ๐๐ (ii) to the left of the line ๐ = ๐ (iii) below the line ๐ = ๐ these conditions are satisfied by ๐๐ + ๐๐ โฅ ๐๐, ๐ โค ๐, ๐ โค ๐, ๐ โฅ ๐, ๐ โฅ ๐ 3 1 4 51. Given that A and B are two events such that ๐(๐ต) = 5 P(A/B) = 2 and P(๐ด โช ๐ต) = 5 then P(A) = 3 1 1 3 (A) (B) 2 (C) 5 (D) 5 10 ANS: (B) SOL: ๐ท(๐จ โช ๐ฉ) = ๐ท(๐จ) + ๐ท(๐ฉ) โ ๐ท(๐จ โฉ ๐ฉ) ๐ท(๐จ โช ๐ฉ) = ๐ท(๐จ) + ๐ท(๐ฉ) โ ๐ท(๐จ|๐ฉ). ๐ท(๐ฉ) ๐ท(๐จ) = ๐ท(๐จ โช ๐ฉ) + ๐ท(๐จ|๐ฉ). ๐ท(๐ฉ) โ ๐ท(๐ฉ) ๐ ๐ ๐ ๐ ๐ ๐ท(๐จ) = ๐ + (๐ . ๐) โ ๐ = ๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA 52. If A, B and C are three independent events such that P(A)=P(B)=P(C)=P then P (at least two of A, B, C occur) = (A) ๐3 โ 3๐ (B) 3๐ โ 2๐2 (C) 3๐2 โ 2๐3 (D) 3๐2 ANS: (C) SOL: ๐ (๐๐ญ ๐ฅ๐๐๐ฌ๐ญ ๐ญ๐ฐ๐จ ๐จ๐ ๐, ๐, ๐ ๐จ๐๐๐ฎ๐ซ) = ๐ท(๐จ๐ฉ๐ชโฒ ) + ๐ท(๐จ๐ฉโฒ ๐ช) + ๐ท(๐จโฒ ๐ฉ๐ช) + ๐ท(๐จ๐ฉ๐ช) = ๐ท. ๐ท. (๐ โ ๐ท) + ๐ท. (๐ โ ๐ท). ๐ท + (๐ โ ๐ท). ๐ท. ๐ท + ๐ท. ๐ท. ๐ท = ๐ท๐ [๐ โ ๐๐ท] = ๐๐ท๐ โ ๐๐ท๐ 53. Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6 the probability of getting a sum as 3 is 1 5 1 2 (A) (B) 18 (C) 5 (D) 5 18 ANS: (C) SOL: Favourable outcomes are (๐, ๐) and (๐, ๐). Total outcomes are (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐) ๐ ๐ Required probability = ๐๐ = ๐ 54. A car manufacturing factory has two plants X and Y. Plant X manufactures 70% of cars and plant Y manufactures 30% of cars, 80% of cars at plant X and 90% of cars at plant Y are rated as standard quality. A car is chosen at random and is found to be of standard quality. The probability that it has come from plant X is 56 56 56 56 (A) (B) 84 (C) 83 (D) 79 73 ANS: (C) ๐ ๐ ๐ ๐ SOL: ๐ท(๐ฌ๐ ) = ๐๐ , ๐ท(๐ฌ๐ ) = ๐๐ , ๐ท(๐จ|๐ฌ๐ ) = ๐๐ and ๐ท(๐จ|๐ฌ๐ ) = ๐๐ ๐ท(๐ฌ๐ ).๐ท(๐จ|๐ฌ๐ ) Required ๐ท(๐ฌ๐ |๐จ) = ๐ท(๐ฌ ๐ ).๐ท(๐จ|๐ฌ๐ )+๐ท(๐ฌ๐ ).๐ท(๐จ|๐ฌ๐ ) ๐ ๐ . ๐๐ ๐๐ ๐๐ ๐ท(๐ฌ๐ |๐จ) = ๐ ๐ ๐ ๐ = ๐๐ . + . ๐๐ ๐๐ ๐๐ ๐๐ 55. In a certain town 65% families own cell phones, 15000 families own scooter and 15% families own both. Taking into consideration the families own at least one of the two, the total number of families in the town is (A) 20000 (B) 30000 (C) 40000 (D) 50000 ANS: (B) SOL: Let ๐ be the total population. ๐๐ ๐๐ Given, ๐(๐จ) = ๐๐๐ ๐ , ๐(๐ฉ) = ๐๐๐๐๐, ๐(๐จ โฉ ๐ฉ) = ๐๐๐ ๐ and ๐(๐ผ) = ๐(๐จ โช ๐ฉ) ๐๐ ๐๐ โ ๐ = ๐๐๐ ๐ + ๐๐๐๐๐ โ ๐๐๐ ๐ โ ๐ = ๐๐๐๐๐ ๐(๐ด) 56. A and B are non -singleton sets and n(A ร B) = 35. If ๐ต โ ๐ด then ๐ถ๐(๐ต) = (A) 28 (B) 35 (C) 42 (D) 21 ANS: (D) SOL: Since A and B are non-singleton sets and BโA we get; ๐(๐จ) = ๐ and ๐(๐ฉ) = ๐ โ ๐๐ช๐ = ๐๐ HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA ๐ฅ 57. Domain of f(๐ฅ) = 1โ|๐ฅ|is (A) ๐ โ [โ1,1] (B) (โโ, 1) (C) (โโ, 1) โช (0,1) (D) ๐ โ {โ1, 1} ANS: (D) SOL: ๐ โ |๐| โ ๐ โ |๐| โ ๐ โ ๐ โ ยฑ๐ โ ๐ โ ๐น โ {โ๐, ๐} 58. The value of ๐๐๐ 1 200ยฐ + ๐ก๐๐ 1 485ยฐ is 1 3 3 1 (A) (B) 2 (C) โ 2 (D) โ 2 2 ANS: (A) SOL: ๐๐๐ ๐ ๐๐๐ยฐ + ๐๐๐ ๐ ๐๐๐ยฐ = ๐๐จ๐ฌ(๐๐๐๐ยฐ + ๐๐๐ยฐ) + ๐ญ๐๐ง(๐๐๐๐ยฐ + ๐๐ยฐ) = ๐๐๐๐๐๐ยฐ + ๐๐๐๐๐ยฐ ๐ ๐ = โ๐+๐ = ๐ 59. The value of ๐ก๐๐ 1ยฐ ๐ก๐๐ 2ยฐ ๐ก๐๐ 3ยฐ . . . . . . . . . ๐ก๐๐ 8 9ยฐ is 1 (A) 0 (B) 1 (C) 2 (D) -1 ANS: (B) SOL: ๐๐๐ ๐ยฐ ๐๐๐ ๐ยฐ ๐๐๐ ๐ยฐ โฆ โฆ โฆ ๐๐๐ ๐ ๐ยฐ = ๐๐๐๐ยฐ๐๐๐๐ยฐ. ๐๐๐๐ยฐ๐๐๐๐ยฐ โฆ ๐๐๐๐๐ยฐ๐๐๐๐๐ยฐ. ๐๐๐๐๐ยฐ = ๐. ๐. ๐ โฆ ๐. ๐ =๐ 1+๐ ๐ฅ 60. If (1โ๐) = 1 then (A) ๐ฅ = 4๐ + 1; ๐ โ ๐ (B) ๐ฅ = 2๐ + 1; ๐ โ ๐ (C) ๐ฅ = 2๐; ๐ โ ๐ (D) ๐ฅ = 4๐; ๐ โ ๐ ANS: (D) ๐+๐ ๐ SOL: (๐โ๐) = ๐ (๐+๐)(๐+๐) ๐ โ [(๐โ๐)(๐+๐)] = ๐ ๐ ๐+๐๐ +๐๐ โ[ ] =๐ ๐+๐ ๐ โ ๐ = ๐ โ ๐ = ๐๐, ๐ โ ๐ต Department of Mathematics โ Mr. Ashwath S L โ Mr. Ganapathi K S โ Mr. Aditya Vati K โ MR. Gopal Reddy โ Mr. Rakshith B S CREATIVE EDUCATION FOUNDATION MOODBIDRI (R) Website : www.creativeedu.in Phone No. : 9019844492 HKS P. U COLLEGE, HASSAN CREATIVE P. U COLLEGE, KARKALA
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-