CREATIVE LEARNING CLASSES, KARKALA SECOND PU ANNUAL EXAMINATION APRIL โ 2022 MATHEMATICS DETAILED SOLUTION PART - A Answer ANY TEN questions: 1) Show that the relation R on the set {1, 2, 3} given by ๐น = {(๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐)} is not transitive. Ans: (1, 2), (2,3) โ ๐ but (1, 3) โ ๐ . Hence R is not transitive. 2) Let * be the binary operation on N given by ๐ โ ๐ = ๐. ๐. ๐ ๐จ๐ ๐ ๐๐ง๐ ๐. Find ๐ โ ๐. Ans: 5 โ 7 = ๐ฟ. ๐ถ. ๐ ๐๐ 5 ๐๐๐ 7 = 35. 3) Write the principal value branch of ๐๐๐โ๐ ๐. Ans: (0, ๐). 4) Find the value of ๐๐จ๐ฌ(๐๐๐โ๐ ๐ + ๐๐๐๐๐โ๐ ๐), |๐| โฅ ๐. ๐ Ans: ๐๐๐ (๐ ๐๐ โ1 ๐ฅ + ๐๐๐ ๐๐ โ1 ๐ฅ) = ๐๐๐ 2 = 0. 5) Define a diagonal matrix. Ans: A square matrix in which all the non-diagonal elements are zero is called as a diagonal matrix. ๐ ๐ ๐ ๐ 6) Find the value of ๐ if | |=| |. ๐ ๐ ๐๐ ๐ Ans: 10 โ 12 = 5๐ฅ โ 6๐ฅ โน โ2 = โ๐ฅ โน ๐ฅ = 2. ๐ ๐ 7) If ๐ = ๐ฌ๐ข๐ง(๐๐ + ๐), find ๐ ๐ . ๐๐ฆ Ans: ๐๐ฅ = ๐. ๐๐๐ (๐๐ฅ + ๐). ๐ 8) Differentiate ๐ = ๐๐ with respect to ๐. ๐๐ฆ 3 Ans: ๐๐ฅ = (3๐ฅ 2 ). (๐ ๐ฅ ) 9) Find โซ ๐ฌ๐๐ ๐ (๐ฌ๐๐ ๐ + ๐ญ๐๐ง ๐)๐ ๐. Ans: โซ ๐ ๐๐ ๐ฅ(๐ ๐๐ ๐ฅ + ๐ก๐๐ ๐ฅ)๐๐ฅ = โซ ๐ ๐๐ 2 ๐ฅ ๐๐ฅ + โซ ๐ ๐๐ ๐ฅ. ๐ก๐๐ ๐ฅ ๐๐ฅ = ๐ก๐๐๐ฅ + ๐ ๐๐๐ฅ + ๐ถ ๐ 10) Evaluate โซ๐ ๐๐ ๐ ๐. 3 3 ๏ฉ x3 ๏น 27โ8 19 Ans: โซ2 ๐ฅ 2 ๐๐ฅ = ๏ช ๏บ = 3 = 3 ๏ซ 3 ๏ป2 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI ฬ. โ = ๐๐ฬ + ๐๐ฬ + ๐ 11) Find the unit vector in the direction of the vector ๐ ๐โ ฬ 2๐ฬ+3๐ฬ +๐ Ans: ๐ฬ = |๐โ| = โ14 12) Define collinear vectors. Ans: Two or more vectors are said to be collinear if they are parallel to the same line. 13) Write the direction cosines of y โ axis. Ans: < 0, 1, 0 > 14) Define feasible region in a linear programming problem. Ans: The common region determined by all the constraints including the non-negative constraints of an LPP is called as feasible region. 15) If ๐ท(๐จ) = ๐. ๐, ๐ท(๐ฉ) = ๐. ๐ and ๐ท(๐จ โฉ ๐ฉ) = ๐. ๐, find ๐ท(๐จ|๐ฉ). ๐(๐ดโฉ๐ต) 0.2 2 Ans: ๐(๐ด|๐ต) = = 0.3 = 3 . ๐(๐ต) PART โ B Answer ANY TEN questions: ๐๐ 16) Verify whether the operation * defined on the set of rationals Q by ๐ โ ๐ = is associative or not. ๐ ๐๐ ๐๐๐ Ans: (๐ โ ๐) โ ๐ = ( 2 ) โ ๐ = 4 ๐๐ ๐๐๐ ๐ โ (๐ โ ๐) = ๐ โ ( 2 ) = 4 โน (๐ โ ๐) โ ๐ = ๐ โ (๐ โ ๐) โ๐, ๐, ๐ โ Q Hence * is associative. โ๐ ๐ 17) Show that ๐๐๐โ๐ (๐๐โ๐ โ ๐๐ ) = ๐๐๐๐โ๐ ๐, โค๐โค . โ๐ โ๐ Ans: Let ๐ฅ = sin ๐ โน ๐ = ๐ ๐๐โ1 ๐ฅ ๐ ๐๐โ1 (2๐ฅโ1 โ ๐ฅ 2 ) = ๐ ๐๐โ1 (2 sin ๐. ๐๐๐ ๐) = ๐ ๐๐โ1 (sin 2๐) = 2๐ = 2๐ ๐๐โ1 ๐ฅ. 18) Find the value of ๐๐๐โ๐ (โ๐) โ ๐๐๐โ๐ (โโ๐). Ans: ๐ก๐๐โ1 (โ3) โ ๐๐๐ก โ1 (โโ3) ๐ ๐ ๐ 5๐ ๐ = 3 โ (๐ โ 6 ) = 3 โ = โ2 6 ๐ ๐ ๐ ๐ 19) If ๐ฟ + ๐ = [ ] and ๐ฟ โ ๐ = [ ], find ๐ฟ and ๐. ๐ ๐ ๐ ๐ 7 0 3 0 Ans: ๐ฟ + ๐ + ๐ โ ๐ = [ ]+[ ] 2 5 0 3 10 0 โน 2๐ = [ ] 2 8 5 0 2 0 โน๐=[ ] and ๐ = [ ] 1 4 1 1 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 20) Find the area of the triangle whose vertices are (๐, ๐), (๐, ๐), and (๐๐, ๐) using determinants. 2 7 1 1 1 47 Ans: Area of triangle = 2 | 1 1 1| = 2 [(โ14) โ (โ63) + (โ2)] = 2 sq.units. 10 8 1 ๐ ๐ 21) If ๐๐ + ๐๐ = ๐ฌ๐ข๐ง ๐, find ๐ ๐ . Ans: 2๐ฅ + 3๐ฆ = sin ๐ฅ Differentiating w.r.t ๐ฅ ๐๐ฆ โน 2 + 3 ๐๐ฅ = ๐๐๐ ๐ฅ ๐๐ฆ ๐๐๐ ๐ฅโ2 โน ๐๐ฅ = . 3 22) Differentiate ๐๐ฌ๐ข๐ง ๐ , ๐ > ๐ with respect to ๐. Ans: ๐ฆ = ๐ฅ sin ๐ฅ Taking logarithm on both sides โน ๐๐๐ ๐ฆ = (๐ ๐๐ ๐ฅ)(๐๐๐ ๐ฅ) Differentiating w.r.t ๐ฅ 1 ๐๐ฆ ๐ ๐๐๐ฅ โน ๐ฆ ๐๐ฅ = + (๐๐๐ ๐ฅ)(๐๐๐ ๐ฅ) ๐ฅ ๐๐ฆ ๐ ๐๐๐ฅ โน ๐๐ฅ = (๐ฅ sin ๐ฅ ) ( + (๐๐๐ ๐ฅ)(๐๐๐ ๐ฅ)). ๐ฅ ๐ ๐ 23) Find ๐ ๐ if ๐ = ๐ฅ๐จ๐ ๐ (๐ฅ๐จ๐ ๐). log๐(๐๐๐๐ฅ) Ans: ๐ฆ = log 7 (log ๐ฅ) = log๐ 7 Differentiating w.r.t ๐ฅ ๐๐ฆ 1 1 1 โน ๐๐ฅ = (๐๐๐ 7) (๐๐๐ ๐ฅ) (๐ฅ). 24) Find the approximate value of โ๐๐. ๐ . Ans: Let ๐ฆ = โ๐ฅ ๐ฅ = 25, โ๐ฅ = 0.3 Then โ๐ฆ = โ๐ฅ + โ๐ฅ โ โ๐ฅ = โ25.3 โ โ25 = โ25.3 โ 5 โน โ25.3 = 5 + โ๐ฆ ๐๐ฆ 1 0.3 Now, โ๐ฆ = (๐๐ฅ ) (โ๐ฅ) = 2 (0.3) = = 0.03 โ๐ฅ 10 โน โ25.3 = 5 + 0.03 = 5.03. 25) Evaluate โซ ๐๐ . ๐๐๐ ๐ ๐ ๐. ๐ฅ3 ๐ฅ3 1 Ans: โซ ๐ฅ 2 . ๐๐๐ ๐ฅ ๐๐ฅ = (๐๐๐ ๐ฅ) ( 3 ) โ โซ ( 3 ) (๐ฅ) ๐๐ฅ ๐ฅ 3 .log ๐ฅ 1 = โ โซ ๐ฅ 2 ๐๐ฅ 3 3 ๐ฅ 3 .log ๐ฅ ๐ฅ3 = โ +๐ถ 3 9 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI ๐๐๐๐ ๐ 26) Find โซ ๐+๐๐๐ ๐ ๐ ๐ ๐ ๐๐2 ๐ฅ (1โ๐๐๐ 2 ๐ฅ) (1โ๐๐๐ ๐ฅ)(1+๐๐๐ ๐ฅ) Ans: โซ 1+๐๐๐ ๐ฅ ๐๐ฅ = โซ ๐๐ฅ = โซ ๐๐ฅ 1+๐๐๐ ๐ฅ 1+๐๐๐ ๐ฅ = โซ(1 โ ๐๐๐ ๐ฅ)๐๐ฅ = โซ 1 ๐๐ฅ โ โซ ๐๐๐ ๐ฅ ๐๐ฅ = ๐ฅ โ ๐ ๐๐ ๐ฅ + ๐ถ ๐ /๐ 27) Evaluate โซ๐ (๐ฌ๐ข๐ง ๐๐) ๐ ๐ ๐ ๐/4 1 4 1 ๐ 1 Ans: โซ0 (sin 2๐ฅ) ๐๐ฅ = โ 2 [cos 2๐ฅ]0 = โ 2 (cos 2 โ cos 0) = 2 . ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ 28) Find the order and degree of the differential equation (๐ ๐๐ ) + (๐ ๐) + ๐ฌ๐ข๐ง (๐ ๐) + ๐ = ๐. Ans: Order = 2 Degree is not defined. 29) Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are ๐ฬ + ๐๐ฬ โ ๐ฬ and โ๐ฬ + ๐ฬ + ๐ ฬ respectively in the ratio ๐: ๐ internally. Ans: ๐ = ๐ฬ + 2๐ฬ โ ๐ฬ, ๐โ = โ๐ฬ + ๐ฬ + ๐ฬ ๐: ๐ = 2: 1 โ +๐๐โ ๐๐ ฬ )+1(๐ฬ+2๐ฬ โ๐ 2(โ๐ฬ+๐ฬ +๐ ฬ) 1 4 1 Required Vector ๐ = = = โ 3 ๐ฬ + 3 ๐ฬ + 3 ๐ฬ. ๐+๐ 2+1 ฬ and โ๐ = ๐ฬ โ ๐ฬ + ๐ 30) Find the area of the parallelogram whose adjacent sides are given โ๐ = ๐๐ฬ + ๐ฬ + ๐๐ ฬ. ๐ฬ ๐ฬ ๐ฬ Ans: ๐ ร ๐ = |3 1 4| = 5๐ฬ + ๐ฬ โ 4๐ฬ โ 1 โ1 1 Area of the parallelogram = |๐ ร ๐โ| = โ25 + 1 + 16 = โ42 sq. units 31) Find the distance of a point (๐, โ๐, ๐) from the plane ๐๐ โ ๐ + ๐๐ + ๐ = ๐. Ans: (๐ฅ1 , ๐ฆ1 , ๐ง1 ) = (3, โ2, 1) ๐ด = 2, ๐ต = โ1, ๐ถ = 2, ๐ท = โ3 |๐ด๐ฅ1 +๐ต๐ฆ1 +๐ถ๐ง1 โ๐ท| |(6)+(2)+(2)+3| 13 Required Distance ๐ = โ๐ด2 +๐ต2 +๐ถ 2 = = units. โ4+1+4 3 ฬ ) + ๐(๐ฬ + ๐๐ฬ + ๐๐ โ = (๐๐ฬ + ๐๐ฬ โ ๐๐ 32) Find the angle between the pair of lines given by ๐ ฬ ) and ฬ ). โ = (๐๐ฬ โ ๐๐ฬ) + ๐(๐๐ฬ + ๐๐ฬ + ๐๐ ๐ Ans: โโโ ๐1 = ๐ฬ + 2๐ฬ + 2๐ฬ, ๐ โโโโ2 = 3๐ฬ + 2๐ฬ + 6๐ฬ โโโ1 | = โ1 + 4 + 4 = 3, |๐ |๐ โโโโ2 | = โ9 + 4 + 36 = 7 โโโโ .๐ ๐ โโโโ 3+4+12 19 Angle between lines ๐ = ๐๐๐ โ1 ||๐โโโโ1||๐โโโโ2 || = ๐๐๐ โ1 | | = ๐๐๐ โ1 (21). 1 2 (3)(7) 33) The random variable X has a probability distribution P(X) of the following form, where ๐ is some number: HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI ๐, ๐๐ ๐ฟ = ๐ ๐๐, ๐๐ ๐ฟ = ๐ ๐ท(๐ฟ) = { Determine the value of ๐. ๐๐, ๐๐ ๐ฟ = ๐ ๐, ๐๐๐๐๐๐๐๐๐ Ans: X 0 1 2 P(X) k 2k 3k ๐ + 2๐ + 3๐ = 1 โน 6๐ = 1 1 โด๐= 6 PART โ C Answer ANY TEN questions 34) Show that the relation R in the set of integers given by R ๏ป๏จa,b ๏ฉ : 2 divides (a - b)๏ฝ is an equivalence relation. Solution: 2 divides 0 ๏ 2 divides a-a ๏ (a,a) ๏R ๏ข a ๏Z ๏ R is reflexive. Let (a,b) ๏R ๏ 2 divides a-b ๏ 2 divides โ (a-b) ๏ 2 divides b-a ๏ (b,a) ๏R ๏ R is symmetric. Let (a,b) ๏R and (b,c) ๏R ๏ 2 divides a-b and 2 divides b-c ๏ 2 divides (a-b) + (b-c) ๏ 2 divids a โ c ๏ (a,c) ๏R ๏ R is transitive Thus R is Equivalence relation. ฯ 35) Solve tan-1 ๏จ 2x ๏ฉ + tan-1 ๏จ 3x ๏ฉ = , x > 0 4 ๏ฆ 2x + 3x ๏ถ ฯ Solution: tan -1 ๏ง ๏ท= ๏จ 1- 2x ๏ด 3x ๏ธ 4 ๏ฆ 5x ๏ถ ฯ tan -1 ๏ง 2 ๏ท = ๏จ 1- 6x ๏ธ 4 5x ฯ 2 = tan 1- 6x 4 5x = 1 ๏ 5x = 1- 6x 2 1- 6x 2 ๏ 6x 2 + 5x -1 =0 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 6x 2 + 6x - x -1 = 0 6x ๏จ x +1๏ฉ -1๏จ x +1๏ฉ = 0 6x -1 = 0 or x +1 = 0 1 x= and x = -1 6 sincex = -1 doesnotsatisfy the equation 1 ๏x= is a solution. 6 ๏ฉ1 5๏น 36) Express A = ๏ช ๏บ , as the sum of symmetric and skew symmetric matrix. ๏ซ-1 2 ๏ป ๏ฉ 1 5๏น ๏ฉ1 -1๏น Solution: Let A = ๏ช ๏บ, A๏ข = ๏ช ๏บ ๏ซ-1 2๏ป ๏ซ5 2 ๏ป ๏ฉ 1 5 ๏น ๏ฉ1 -1๏น ๏ฉ 2 4๏น A + A๏ข = ๏ช ๏บ+๏ช ๏บ=๏ช ๏บ ๏ซ-1 2๏ป ๏ซ5 2 ๏ป ๏ซ 4 4๏ป 1 1 ๏ฉ 2 4 ๏น ๏ฉ1 2 ๏น ๏จ A + A๏ข ๏ฉ = ๏ช 2 ๏ซ 4 4๏บ๏ป ๏ช๏ซ 2 2๏บ๏ป Let P = = 2 ๏ฉ1 2 ๏น Now p๏ข ๏ฝ ๏ช ๏บ๏ฝP ๏ซ2 2๏ป 1 Thus P = ๏จ A + A๏ข ๏ฉ isa symmetric matrix 2 ๏ฉ 1 5 ๏น ๏ฉ1 -1๏น ๏ฉ 0 6๏น ๏จ A - A๏ข ๏ฉ = ๏ช ๏บ-๏ช ๏บ=๏ช ๏บ ๏ซ-1 2๏ป ๏ซ5 2 ๏ป ๏ซ-6 0๏ป 1 1 ๏ฉ 0 6 ๏น ๏ฉ 0 3๏น ๏จ A - A๏ข ๏ฉ = ๏ช 2 ๏ซ-6 0๏บ๏ป ๏ช๏ซ-3 0๏บ๏ป Let Q= = 2 ๏ฉ0 ๏ญ3๏น Q๏ข = ๏ช ๏บ = -Q ๏ซ3 0 ๏ป ๏ Q = 1 ๏จ A - A๏ข ๏ฉ is skew symmetric matrix. 2 ๏ฉ1 2 ๏น ๏ฉ 0 3๏น Now P + Q = ๏ช ๏บ+๏ช ๏บ ๏ฝA ๏ซ 2 2๏ป ๏ซ-3 0๏ป Thus A is represented as sum of symmetric and skew symmetric matrix. 2 7 65 37) Without expanding and using property of determinants, prove that: 3 8 75 = 0 5 9 86 2 7 65 Solution: ๏ ๏ฝ 3 8 75 5 9 86 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 2 7 63 ๏ซ 2 ๏ฝ 3 8 72 ๏ซ 3 5 9 81 ๏ซ 5 2 7 63 2 7 2 ๏ฝ 3 8 72 ๏ซ 3 8 3 5 9 81 5 9 5 2 7 9(7) ๏ฝ 3 8 9(8) ๏ซ 0 [ Two columns are identical] 5 9 9(9) 2 7 7 ๏ฝ9 3 8 8 5 9 9 =0 [ Two columns are identical] -1 ๏ฆ 1 - x ๏ถ 2 38) Find dy / dx , if y = cos ๏ง 2 ๏ท 0< x <1 ๏จ1+ x ๏ธ ๏ฆ 1- x 2 ๏ถ Solution: y = cos-1 ๏ง 2 ๏ท ๏จ 1+ x ๏ธ Put x = tanฮธ ๏ ฮธ = tan -1x ๏ฆ 1- tan 2ฮธ ๏ถ y = cos-1 ๏ง 2 ๏ท ๏จ 1+ tan ฮธ ๏ธ y = cos-1 ๏จ cos2ฮธ ๏ฉ = 2ฮธ y = 2tan -1x. Differentiate w.r.t x ๐๐ฆ 2 = 1+๐ฅ 2 ๐๐ฅ 39) If x = a ๏จ ฮธ - sinฮธ ๏ฉ and y = a ๏จ1 + cosฮธ ๏ฉ , find dy dx Solution: x = a ๏จ ฮธ - sinฮธ ๏ฉ y = a ๏จ1+ cosฮธ๏ฉ D.w.r. toฮธ D.w.r toฮธ dx = a ๏จ1- cosฮธ ๏ฉ dy = a ๏จ -sinฮธ ๏ฉ dฮธ dฮธ dy dy d๏ฑ -a sinฮธ = = dx dx a ๏จ1- cosฮธ ๏ฉ d๏ฑ ฮธ ฮธ -2sin .cos dy = 2 2 = -cot ฮธ dx ฮธ 2 2sin 2 2 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 40) Verify Mean value theorem for the function f ๏จ x ๏ฉ = x 2 in the interval [2,4]. Solution: The function f ๏จ x ๏ฉ = x 2 is continuous in [2,4] and differentiable in (2,4) as its derivative f 1 ๏จ x ๏ฉ = 2x is defined in (2,4). Now f ๏จ 2 ๏ฉ = 4, and f ๏จ 4 ๏ฉ = 16 Hence there exist at least one value c ๏ ๏จ 2,4 ๏ฉ f ๏จb๏ฉ - f ๏จa ๏ฉ such that f 1 ๏จ c ๏ฉ = b-a Now f ๏จ x ๏ฉ = x 2 ๏ f ๏จ x ๏ฉ = 2x ๏ f 1 ๏จ c ๏ฉ = 2c 1 16 - 4 12 ๏ 2c = = =6 4-2 2 2c = 6 ๏ c = 3 ๏ ๏จ 2,4 ๏ฉ Hence mean value theorem verified. 41) Find the intervals in which the function f given by f ๏จ x ๏ฉ = x 2 - 4x + 6 is (i) strictly increasing (ii) strictly decreasing. Solution: f ๏จ x ๏ฉ = x 2 - 4x + 6, f 1 ๏จ x ๏ฉ = 2x - 4 for strictlyincresing f 1 ๏จ x ๏ฉ > 0, i.e., 2x - 4 > 0 ๏ x ๏พ 2 i) Strictly increasing x ๏ ๏จ 2, ๏ฅ ๏ฉ for strictly decresing f 1 ๏จ x ๏ฉ ๏ผ 0 i.e., 2x - 4 < 0 ๏ x ๏ผ 2 ii) Strictly decreasing x ๏๏จ -๏ฅ, 2 ๏ฉ x 42) Find ๏ฒ ๏จ x + 1๏ฉ๏จ x + 2๏ฉ dx x A B Solution: Let = + ๏จ x +1๏ฉ๏จ x + 2 ๏ฉ ๏จ x +1๏ฉ ๏จ x + 2 ๏ฉ x A ๏จ x + 2 ๏ฉ + B ๏จ x +1๏ฉ = ๏จ x +1๏ฉ๏จ x + 2 ๏ฉ ๏จ x +1๏ฉ๏จ x + 2 ๏ฉ x = A ๏จ x + 2 ๏ฉ + B ๏จ x +1๏ฉ Put x = -2 we get B = 2 Put x = -1 we get A = -1 x ๏ฆ -1 2 ๏ถ ๏ฒ ๏จ x +1๏ฉ๏จ x + 2๏ฉ ๏ฒ ๏ง ๏จ x +1๏ฉ ๏จ x + 2๏ฉ ๏ท๏ท dx dx = ๏ง + ๏จ ๏ธ HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 1 1 = 2๏ฒ dx - ๏ฒ dx ๏จ x + 2๏ฉ ๏จ x +1๏ฉ = 2log ๏จ x + 2 ๏ฉ -log ๏จ x +1๏ฉ + C = log ๏จ x + 2 ๏ฉ - log ๏จ x +1๏ฉ + C 2 ๏จ x + 2๏ฉ 2 = log +C ๏จ x +1๏ฉ 1 tan -1 x 43) Evaluate ๏ฒ .dx 0 1 + x2 1 tan -1x Solution: Let I = ๏ฒ dx 0 1+ x 2 put tan -1x = t dx = dt 1+ x 2 put x = 0 t = 0 x =1 t=ฯ 4 ฯ ฯ 4 t2 ๏น 4 ๏I = ๏ฒ t dt = 0 ๏บ 2 ๏ป0 ๏ฆ ฯ2 ๏ถ ฯ2 =1 ๏ง ๏ท = 2 16 ๏จ ๏ธ 32 ๏จ x - 3 ๏ฉ ex 44) Find the integral of ๏ฒ ๏จ x - 1๏ฉ 3 with respect to x Solution: I = ๏ฒ ๏จ x - 3๏ฉ ex .dx ๏จ x -1๏ฉ 3 ๏ฆ ๏จ x -1๏ฉ - 2 ๏ถ = ๏ฒ ex ๏ง ๏ท dx ๏ง ๏จ x -1๏ฉ3 ๏ท ๏จ ๏ธ ๏ฆ 1 2 ๏ถ = ๏ฒ ex ๏ง - ๏ท dx ๏ง ๏จ x -1๏ฉ ๏จ x -1๏ฉ3 ๏ท 2 ๏จ ๏ธ 1 -2 Here f ๏จ x ๏ฉ = ๏ f1 ๏จx๏ฉ = ๏จ x -1๏ฉ ๏จ x -1๏ฉ 2 3 ๏ฒ e ๏จf ๏จ x ๏ฉ + f ๏จ x ๏ฉ๏ฉ dx = e f ๏จ x ๏ฉ + c x 1 x ๏ฆ 1 2 ๏ถ ex ๏ ๏ฒ ๏ง ๏จ x -1๏ฉ2 ๏จ x -1๏ฉ3 ๏ท ๏จ x -1๏ฉ2 + c ๏ง ๏ท x e - dx = ๏จ ๏ธ HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 45) Determine the area of the region bounded by y 2 = x and the lines x =1, x = 4 and the x-axis in the first quadrant. Solution : Given equation of the curve y 2 = x ๏ y= x ๏ Required area of region ABCDA A=๏ฒ 4 xdx 1 4 ๏ฌ x 32 ๏ผ ๏ฏ ๏ฏ =๏ญ ๏ฝ ๏ฏ๏ฎ 3 2 ๏ฏ๏พ1 2 4 = ๏ฉ๏ซ x x ๏น๏ป 3 1 2๏ฉ = 4 4 -1 1 ๏น๏ป 3๏ซ 2 2 = ๏ 4 ๏ด 2 -1๏ = ๏7 ๏ 3 3 14 = sq unit 3 46) Form the Differential Equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis. Solution: The eqn, of the family of parabola having the vertex at origin and the axis along the positive x-axis is y2 = 4ax - - - - - ๏จ1๏ฉ Differentiating eqn (1) w. r. t. x, we get dy 2y = 4a - - - - - ๏จ ii ๏ฉ dx Substituting the value of 4a from eqn (ii) in ๏ฆ dy ๏ถ eqn(1) we get y2 = ๏ง 2y ๏ท ๏จ x ๏ฉ ๏จ dx ๏ธ dy ๏ y 2 - 2 xy = 0 dx Which is the required D. E. 47) Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = ๏จ 2x2 +1๏ฉ dx ๏ฉ๏ซ๏จ x ๏น 0๏ฉ๏น๏ป HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI Solution: The given differential equation can be expressed as ๏ฆ 2x 2 +1 ๏ถ dy = ๏ง ๏ท dx ..............๏จ1๏ฉ ๏จ x ๏ธ Integrate both sides of equation (1) we get ๏ฒ dy = ๏ฒ ๏จ 2x + 1 x ๏ฉ dx y = x 2 + log x + C................... ๏จ 2 ๏ฉ it passes through (1, 1) therefore substitute (1, 1) in equation (2) we get c=0. Now, substitute c = 0 in equation (2) we get required equation of curve y = x 2 + log x 48) Three vectors a, b and c satisfy the condition a + b + c = 0 . Evaluate the quantity ฮผ = a.b+ b .c + c.a, if a = 1 b = 4 and c = 2. Solution: Given a + b + c = 0, a = 1 b = 4 and c = 2 ๏ ๏จ a + b + c ๏ฉ .๏จ a + b + c ๏ฉ = 0 a + b + c + 2 ๏จ a.b + b.c + c.a ๏ฉ = 0 2 2 2 ๏ ๏ 1+ 16+ 4 + 2 ๏จ a.b + b.c + c.a ๏ฉ = 0 ๏ 2 ๏จ a.b + b.c + c.a ๏ฉ = -21 -21 ๏ 2ฮผ = -21 ๏ ฮผ= . 2 49) Prove that ๏ฉ๏ซa,b,c + d ๏น๏ป = ๏ฉ๏ซa,b,c ๏น๏ป + ๏ฉ๏ซa,b,d ๏น๏ป Solution: We have ๏ฉ๏ซa,b,c + d ๏น๏ป = a. b ๏ด c ๏ซ d ๏จ ๏จ ๏ฉ๏ฉ ๏จ = a. b ร c + b ร d ๏ฉ = a. ๏จ b ร c ๏ฉ + a. ๏จ b ร d ๏ฉ = ๏ฉ๏ซa, b,c ๏น๏ป + ๏ฉ๏ซa, b,d ๏น๏ป 50) Find equation of plane passing through line of intersection of the planes 3x - y + 2z โ 4 = 0 and x + y + z -2=0 and the point (2, 2, 1). Solution: Equation of plane passing through the line of intersection is, ๏จ 3x - y + 2z - 4 ๏ฉ + ฮป ๏จ x + y + z - 2 ๏ฉ = 0 - - - - ๏จ1๏ฉ Given that, ๏จ x, y, z ๏ฉ = ๏จ 2, 2,1๏ฉ ๏ ๏จ 3(2) ๏ญ 2 ๏ซ 2(1) ๏ญ 4 ๏ฉ + ฮป ๏ 2 + 2 +1- 2๏ = 0 2 + ฮป ๏จ 3๏ฉ = 0 ฮป ๏จ 3๏ฉ = -2 ๏ ฮป =๏ญ2 / 3 2 ๏ ๏จ1๏ฉ ๏ ๏จ 3x - y + 2z - 4 ๏ฉ ๏ญ ๏จ x + y + z - 2๏ฉ = 0 3 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 9x - 3y + 6z -12 - 2x - 2y - 2z + 4 = 0 ๏ 7x - 5y + 4z -8 = 0 51) A fair coin and an unbiased die are tossed. Let A be the event โhead appears on the coinโ and B be the event โ3 on the dieโ. Check whether A and B are independent events or not. Solution: ๏ฌ( H ,1)( H , 2)( H ,3)( H , 4)( H ,5)( H , 6) ๏ผ The sample space is given by, S ๏ฝ ๏ญ ๏ฝ ๏ฎ (T ,1)(T , 2)(T ,3)(T , 4)(T ,5)(T , 6) ๏พ Let A: Head appears on the coin A ๏ฝ ๏ป(H ,1)(H , 2)(H ,3)(H , 4)(H ,5)(H ,6)๏ฝ 6 1 ๏ P ( A) ๏ฝ ๏ฝ 12 2 B: 3 on die ๏ฝ ๏ป(H ,3),(T ,3)๏ฝ 2 1 ๏ P( B) ๏ฝ ๏ฝ 12 6 A ๏ B ๏ฝ {( H ,3)} 1 P( A ๏ B) ๏ฝ 12 1 2 P ( A) ๏ด P ( B ) ๏ฝ ๏ด ๏ฝ P( A ๏ B) 2 6 Therefore, A and B are independent events. PART โ D Answer any six questions 52) Verify wheather the function ๐: ๐น โ ๐น defined by ๐(๐) = ๐ + ๐๐ is one โ one , onto or bijective. Justify your answer. Solution: f : R ๏ฎ R defined by f ( x) ๏ฝ 1 ๏ซ x 2 x1 , x2 ๏ R such that f ( x1 ) ๏ฝ f ( x2 ) ๏ 1 ๏ซ x12 ๏ฝ 1 ๏ซ x22 ๏ x12 ๏ฝ x22 ๏ x1 ๏ฝ ๏ฑ x2 ๏ f ( x1 ) ๏ฝ f ( x2 ) does not imply that x1 ๏ฝ x2 Consider f (1) ๏ฝ f (๏ญ1) ๏ฝ 2 ๏ f is not one-one Consider an element โ 2 in co domain R. It is seen that f ( x) ๏ฝ 1 ๏ซ x 2 is positive for all x ๏ R . ๏ f is not onto. Hence, f is neither one-one nor onto. 53) Show that the function f : R ๏ฎ R defined by f(x) = 4x+3 is invertible. Also find the inverse of f. Solution : Consider an arbitrary elements y in R. Given function is f(x) = 4x+3 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI for some x in the domain R. ๏ y = 4x + 3 y-3 ๏ 4x = y - 3, ๏ x = ๏ข y๏ R 4 Let us define the functiong : R ๏ฎ R y-3 defrined by g ๏จ y ๏ฉ = . 4 ๏ฆ y-3๏ถ Now fog ๏จ y ๏ฉ = f ๏จ g ๏จ y ๏ฉ ๏ฉ = f ๏ง ๏ท ๏จ 4 ๏ธ ๏ฆ y-3๏ถ = 4๏ง ๏ท+3= y ๏จ 4 ๏ธ ๏ fog ๏จ y ๏ฉ = I R 4x + 3 - 3 4x And gof ๏จ x ๏ฉ = g ๏จ 4x + 3๏ฉ = = =x 4 4 ๏ gof ๏จ x ๏ฉ = IR This shows that fog(y) = IR and gof(x) = IR Hence the given function is invertible with f -1 = g . Hence the given function is invertible. Let f ๏จx๏ฉ = y ๏ f -1 ๏จ y ๏ฉ = x. y-3 x -3 ๏ f -1 ๏จ y ๏ฉ = f -1 ๏จ x ๏ฉ = 4 4 ๏ฉ1 2 -3 ๏น ๏ฉ 3 -1 2 ๏น ๏ฉ4 1 2 ๏น ๏ช 54) If A = ๏ช5 0 2 ๏บ , B = ๏ช4 2 5 ๏บ and C = ๏ช๏ช0 3 2 ๏บ๏บ , then compute ๏จ A + B ๏ฉ and ๏จ B - C๏ฉ . Also ๏บ ๏ช ๏บ ๏ช๏ซ1 -1 1 ๏บ๏ป ๏ช๏ซ 2 0 3 ๏บ๏ป ๏ช๏ซ1 -2 3 ๏บ๏ป verify that A+( B - C ) = ( A+B )-C. ๏ฉ1 2 -3๏น ๏ฉ 3 -1 2 ๏น ๏ฉ 4 1 -1๏น Solution : A + B = ๏ช๏ช5 0 2 ๏บ๏บ + ๏ช๏ช 4 2 5 ๏บ๏บ = ๏ช๏ช9 2 7 ๏บ๏บ ๏ช๏ซ1 -1 1 ๏บ๏ป ๏ช๏ซ 2 0 3 ๏บ๏ป ๏ช๏ซ 3 -1 4 ๏บ๏ป ๏ฉ 3 -1 2๏น ๏ฉ 4 1 2๏น ๏ฉ-1 -2 0๏น B - C = ๏ช๏ช 4 2 5 ๏บ๏บ - ๏ช๏ช0 3 2 ๏บ๏บ = ๏ช๏ช 4 -1 3๏บ๏บ ๏ช๏ซ 2 0 3๏บ๏ป ๏ช๏ซ1 -2 3๏บ๏ป ๏ช๏ซ 1 2 0๏บ๏ป ๏ฉ1 2 -3๏น ๏ฉ-1 -2 0๏น ๏ฉ 0 0 -3๏น A + ๏จ B - C ๏ฉ = ๏ช๏ช5 0 2 ๏บ๏บ ๏ซ ๏ช๏ช 4 -1 3๏บ๏บ = ๏ช๏ช9 -1 5 ๏บ๏บ ๏ช๏ซ1 -1 1 ๏บ๏ป ๏ช๏ซ 1 2 0๏บ๏ป ๏ช๏ซ 2 1 1 ๏บ๏ป ๏ฉ 4 1 -1๏น ๏ฉ 4 1 2 ๏น ๏ฉ0 0 -3๏น ๏จ A + B๏ฉ - C = ๏ช๏ช9 2 7 ๏บ๏บ - ๏ช๏ช0 3 2๏บ๏บ = ๏ช๏ช9 -1 5 ๏บ๏บ ๏ช๏ซ 3 -1 4 ๏บ๏ป ๏ช๏ซ1 -2 3 ๏บ๏ป ๏ช๏ซ 2 1 1 ๏บ๏ป ๏ A+ (B - C) = (A + B) -C. 55) Solve the following system of equations by matrix method 3x โ 2y +3z = 8, 2x +y โz = 1 ,4x โ 3y + 2z =4 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI ๏ฉ 3 -2 3 ๏น ๏ฉx ๏น ๏ฉ8 ๏น ๏ช ๏บ ๏ช ๏บ Solution: Let A = ๏ช 2 1 -1๏บ X = ๏ช y ๏บ and B = ๏ช๏ช1 ๏บ๏บ ๏ช๏ซ 4 -3 2 ๏บ๏ป ๏ช๏ซ z ๏บ๏ป ๏ช๏ซ 4 ๏บ๏ป 3 -2 3 A = 2 1 -1 4 -3 2 A =3 ๏จ 2 - 3๏ฉ + 2 ๏จ 4 + 4 ๏ฉ + 3 ๏จ -6 - 4 ๏ฉ A = - 3 +16 - 30 A = -17 ๏น 0 Hence, A is non-singular and so its inverse exists. Now, A11 = -1 A12 = -8 A13 = -10 Co - factor of A A 21 = -5 A 22 = -6 A 23 = 1 A31 = -1 A32 = 9 A33 = 7 ๏ฉ -1 -8 -10 ๏น Co - factor matrix A = ๏ช๏ช-5 -6 1 ๏บ๏บ ๏ช๏ซ -1 9 7 ๏บ๏ป ๏ฉ -1 -5 -1๏น ๏ adjA = ๏ช๏ช -8 -6 9 ๏บ๏บ ๏ช๏ซ-10 1 7 ๏บ๏ป 1 ๏ A ๏ญ1 ๏ฝ adj ๏จ A ๏ฉ A ๏ฉ -1 -5 -1๏น 1 ๏ช A =-1 ๏ช -8 -6 9 ๏บ๏บ -17 ๏ช๏ซ-10 1 7 ๏บ๏ป Given system of equations can be written as AX ๏ฝ B X ๏ฝ A ๏ญ1B ๏ฉx ๏น ๏ฉ -1 -5 -1๏น ๏ฉ8 ๏น ๏ช y ๏บ = 1 ๏ช -8 -6 9 ๏บ ๏ช1 ๏บ ๏ช ๏บ -17 ๏ช ๏บ๏ช ๏บ ๏ช๏ซ z ๏บ๏ป ๏ช๏ซ-10 1 7 ๏บ๏ป ๏ช๏ซ 4๏บ๏ป ๏ฉx ๏น ๏ฉ-17 ๏น ๏ช y ๏บ = -1 ๏ช -34 ๏บ ๏ช ๏บ 17 ๏ช ๏บ ๏ช๏ซ z ๏บ๏ป ๏ช๏ซ -51๏บ๏ป ๏ x ๏ฝ 1; y ๏ฝ 2; z ๏ฝ 3 56) If y = ๏จ tan-1x ๏ฉ then show that ๏จ x 2 + 1๏ฉ d2 y + 2x ๏จ x 2 + 1๏ฉ 2 2 dy 2 = 2. dx dx Solution: y = ๏จ tan -1x ๏ฉ 2 Differentiate.w.r.t.x = 2 ๏จ tan -1x ๏ฉ ๏ด dy 1 dx 1+ x 2 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI cross multplying ๏จ1+ x 2 ๏ฉ dx dy = 2 ๏จ tan -1x ๏ฉ Again Diff.w. r . t . x on both sides d 2 y dy ๏จ1+ x 2 ๏ฉ dx 2 ๏ซ .2x = dx 2 1+ x 2 multiply ๏จ1+ x 2 ๏ฉ on bothsides d2 y ๏จ1+ x ๏ฉ 2 2 dx 2 + 2x ๏จ1+ x 2 ๏ฉ dy dx =2 57) If length of x rectangle is decreasing at the rate of 3cm/ minute and the width y is increasing at the rate of 2cm/ minute, when x =10cm and y = 6cm. Find the rate of change of (i) the perimeter (ii) the area of the rectangle. dx dy Solution: Given = -3cm / min = +2cm / min dt dt When x = 10cm, y = 6cm. ๏จi ๏ฉ p = 2๏จ x + y๏ฉ D.w.r. to t dp ๏ฆ dx dy ๏ถ = 2๏ง + ๏ท dt ๏จ dt dt ๏ธ dp ๏ = 2 ๏จ -3 + 2 ๏ฉ = -2cm / min dt ๏ Perimeter is decreasing at the rate of2cm/min. ๏จ ii ๏ฉ A = x.y dA dy dx ๏ = x. + y. dt dt dt = 10 ๏จ 2 ๏ฉ + 6 ๏จ -3๏ฉ = 20 -18 = 2cm2 / min ๏ Area is increasing at the rate of 2cm2/min. dx dx 58) Find ๏ฒx 2 - a2 Hence evaluate ๏ฒx 2 - 16 1 1 Solution: we have = x -a22 ๏จ x - a ๏ฉ๏จ x + a ๏ฉ 1 ๏ฉ๏จx + a๏ฉ ๏ญ ๏จx - a๏ฉ ๏น = ๏ช ๏บ 2a ๏ช๏ซ ๏จ x + a ๏ฉ๏จ x - a ๏ฉ ๏บ๏ป 1 ๏ฉ 1 1 ๏น = ๏ญ 2a ๏ซ x - a x + a ๏บ๏ป ๏ช dx 1 ๏ฉ dx dx ๏น ๏ ๏ฒx 2 -a 2 = ๏ช๏ฒ 2a ๏ช๏ซ ๏จ x - a ๏ฉ ๏ญ๏ฒ ๏บ ๏จ x + a ๏ฉ ๏บ๏ป 1 = ๏ฉlog x - a - log x + a ๏น๏ป + c 2a ๏ซ HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI 1 x -a = log +c 2a x +a By the above result, dx dx ๏ฒx 2 -16 ๏ฝ๏ฒ 2 2 x -4 1 x-4 1 x-4 log + c = log +c 2ร 4 x+4 8 x+4 x2 y 2 59) Find the area enclosed by the ellipse + = 1 by using integration a2 b2 Solution: Area of ellipse = 4 (Area of the region ABOA). a Area of region ABOA = ๏ฒ0 y dx x 2 y2 [ Now, + =1 a 2 b2 y2 x2 = 1- b2 a2 y2 a 2 - x 2 = b2 a2 b2 2 2 a2 ๏จa - x ๏ฉ y2 = b 2 2 y= a -x ] a b a Area of region ABOA = ๏ฒ a 2 - x 2 dx a 0 a b ๏ฆ x 2 2 a 2 -1 x ๏ถ = ๏ง a - x + sin ๏ท a๏จ2 2 a ๏ธ0 b ๏ฉ๏ฆ a a2 -1 ๏ถ ๏น = ๏ช๏ง ๏ด 0 + sin 1 ๏ท - 0 ๏บ a ๏ซ๏จ 2 2 ๏ธ ๏ป b ๏ฆ ฯa 2 ๏ถ = ๏ง ๏ท a๏จ 4 ๏ธ ๏ฆ b ๏ถ ฯa 2 ๏ Area of ellipse = 4 ๏ง ๏ท = ฯab ๏จa๏ธ 4 dy ๏ฆ ฯ๏ถ 60) Find the general solution of the differential equation cos2 x. + y = tanx ๏ง 0 ๏ฃ x < ๏ท dx ๏จ 2๏ธ dy ๏ฆ ฯ๏ถ Solution: We have cos2 x. + y = tanx ๏ง 0 ๏ฃ x < ๏ท dx ๏จ 2๏ธ HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI divided by cos2x we get dy + y.sec2 x = tanx.sec2 x dx dy compare with + py = Q dx p = sec2x Q = tanx.sec2x I.F = e๏ฒ = e๏ฒ p.dx sec2 x.dx = etanx solution of differential equation is y(I.F) = ๏ฒ Q(I.F).dx + c y.etanx = ๏ฒ tanx.sec2 x.etanx .dx + c y.etanx = I + C---------(1) when I = ๏ฒ etanx .tanx.sec2 x.dx put tanx = t ๏ sec2 x.dx = dt I = ๏ฒ et .t.dt I = t.et ๏ญ ๏ฒ et .dt I = t.et โ et I = tanx.etanx - etanx --------(2) substitute (2) in (1) y.etanx = tanx.etanx - etanx + c y = tanx โ 1 + c.e-tanx 61) Derive the equation of line in space passing through a point and parallel to the vector both in vector and Cartesian form. Solution: Let a be the position vector of the given point A with respect to the origin O. let โlโ be the line passes through the point A and is parallel to a given vector b . Let r be the position vectors of any point P on the line. Then AP is parallel to b , We have AP = ฮปb ๏ OP - OA = ฮปb ๏ r - a = ฮปb ๏ r = a + ฮปb This gives the position vector of any point P on the line. Hence it is called vector equation of the line. HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI Cartesian form: Let the coordinates of the given points A(x1, y1, z1) and the direction ratios of the line be a , b, c. consider the coordinates of any point P(x, y, z). Then r = xiห + yjห + zkห and a = x1หi + y1หj + z1kห and b = aiห + bjห + ckห Substituting in r = a + ฮปb, we get ๏จ ๏ฉ ๏จ xiห + yjห + zkห = x1หi + y1หj + z1kห + ฮป aiห + bjห + ckห ๏ฉ xiห + yjห + zkห = ๏จ x1 + aฮป ๏ฉ หi + ๏จ y1 + bฮป ๏ฉ หj + ๏จ z1 + cฮป ๏ฉ kห equating their components. x - x1 y - y1 z - z1 We get x = x1 + aฮป, y = y1 + bฮป, z = z1 + cฮป ๏ ฮป= , ฮป= , ฮป= a b c x - x1 y - y1 z - z1 ๏ = = a b c This is the Cartesian equation of the line. 62) A bag contains 4 red and 4 black balls another bag contains 2 red and 6 black balls. One of the bag is selected at random and ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from first bag. 1 Solution: E1 : Event of choosing bag I; P ๏จ E1 ๏ฉ = 2 1 E2 : Event of choosing bag II; P ๏จ E 2 ๏ฉ = 2 A : Ball drawn is a red ball 4 1 P ๏จ A | E1 ๏ฉ == 8 2 2 1 P ๏จ A | E2 ๏ฉ = = 8 4 By Bayeโs theorem P ๏จ E1 ๏ฉ P ๏จ A | E1 ๏ฉ P ๏จ E1 | A ๏ฉ = P ๏จ E1 ๏ฉ P ๏จ A | E1 ๏ฉ + P ๏จ E 2 ๏ฉ P ๏จ A | E 2 ๏ฉ 1 1 1 1 ๏ด = 2 2 = 4 =4 1 1 1 1 1 1 3 ๏ด + ๏ด + 2 2 2 4 4 8 8 2 P ๏จ E1 | A ๏ฉ = 3 63) If a fair coin is tossed 10 times. Find the probability of a) exactly six heads b) at least six head. Solution: Let X be the number of heads obtained when a fair coin is tossed 10 times. Now, n=10 1 P = p (getting a head) = 2 1 1 q = 1-p = 1 ๏ญ ๏ฝ 2 2 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI The binomial distribution of x is P ๏จ X ๏ฝ x ๏ฉ = n c x p x q n-x where x = 0,1,2โฆ..n x 10-x ๏ฆ1๏ถ ๏ฆ1๏ถ ๏ P ๏จ X = x ๏ฉ = 10 c x ๏ง ๏ท ๏ง ๏ท ๏จ2๏ธ ๏จ2๏ธ a) P(Exactly six heads ) = 6 10-6 ๏ฆ1๏ถ ๏ฆ1๏ถ P ๏จ X = 6 ๏ฉ = 10 c6 ๏ง ๏ท ๏ง ๏ท ๏จ 2๏ธ ๏จ 2๏ธ 1 1 210 105 = 210 ๏ด ๏ด = = 64 16 1024 512 b) P (At least 6 heads) = P ๏จ x ๏ณ 6 ๏ฉ = P ๏จ x = 6๏ฉ + P ๏จ x = 7 ๏ฉ + P ๏จ x = 8๏ฉ + P ๏จ x = 9 ๏ฉ +P ๏จ x = 10 ๏ฉ 10 10 10 10 ๏ฆ1๏ถ ๏ฆ1๏ถ ๏ฆ1๏ถ ๏ฆ1๏ถ = 10 c6 ๏ง ๏ท + 10 c7 ๏ง ๏ท + 10 c8 ๏ง ๏ท + 10 c9 ๏ง ๏ท ๏จ ๏ธ 2 ๏จ ๏ธ 2 ๏จ ๏ธ 2 ๏จ 2๏ธ 10 ๏ฆ1๏ถ + 10 c10 ๏ง ๏ท ๏จ2๏ธ 105 120 45 10 1 ๏ฝ + + + + 512 1024 1024 1024 1024 386 193 = = 1024 512 PART โ E Answer ANY ONE question 64) a) Maximize Z = 4x + y Subject to the constraints: x + y ๏ฃ 50; 3x + y ๏ฃ 90; x ๏ณ 0;y ๏ณ 0 Solution: We have to minimize Z = 4x +y Now changing the given in equation x + y ๏ฃ 50 ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ (1) 3x ๏ซ y ๏ฃ 90 ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ(2) x, y ๏ณ 0 ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ(3) To equation, 3x ๏ซ y ๏ฝ 90 x ๏ซ y ๏ฝ 50 x 0 30 x 0 50 y 90 0 y 50 0 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI The shaded region in the above fig is feasible region determined by the system of constraints (1) to (3). It is observed that the feasible region is bounded. The coordinates of the corner point OBEC are (0, 0), (30, 0) (20 , 30) and (0, 50) The maximum value of Z = 4x +y Corner point Z = 4x + y (0 , 0) Z=0 (30 , 0) Z = 120 maximum (20 ,30) Z = 110 (0 , 50) Z = 50 Zmaxi ๏ฝ 120 at the point ๏จ 30, 0 ๏ฉ ๏ฉ2 3๏น b) If the matrix A ๏ฝ ๏ช ๏บ satisfies the equation A ๏ญ 4 A ๏ซ I ๏ฝ O, where I is 2 ๏ด 2 identify 2 ๏ซ 1 2 ๏ป matrix and O is 2 ๏ด 2 zero matrix. Using this equation, find A-1. Solution: Now, A2 ๏ญ 4 A ๏ซ I ๏ฝ O Therefore, AA ๏ญ 4 A ๏ฝ ๏ญ I or AA( A๏ญ1 ) ๏ญ 4 AA๏ญ1 ๏ฝ ๏ญ IA๏ญ1 (Post multiplying by A-1 because |A| ๏น 0) or A( AA๏ญ1 ) ๏ญ 4 I ๏ฝ ๏ญ A๏ญ1 or AI ๏ญ 4I ๏ฝ ๏ญ A๏ญ1 ๏ฉ 4 0 ๏น ๏ฉ 2 3 ๏น ๏ฉ 2 ๏ญ3๏น or A๏ญ1 ๏ฝ 4 I ๏ญ A ๏ฝ ๏ช ๏บ๏ญ๏ช ๏บ๏ฝ๏ช ๏บ ๏ซ 0 4 ๏ป ๏ซ1 2 ๏ป ๏ซ ๏ญ1 2 ๏ป ๏ฉ 2 ๏ญ3 ๏น Hence A๏ญ1 ๏ช ๏บ ๏ซ ๏ญ1 2 ๏ป HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI ๏ฐ ๏ฒ f ๏จ x ๏ฉ dx = ๏ฒ f ๏จ a - x ๏ฉ dx and hence evaluate a a 2 sinx 65) a) Prove that 0 0 ๏ฒ 0 sinx + cosx dx ๏ฒ f ๏จ a - x ๏ฉ dx a Consider 0 When x = a, t = 0, Put a - x = t in RHS and x = 0, t = a dx = - dt = -๏ฒ f ๏จ t ๏ฉ๏จ dt ๏ฉ 0 a) a ๏ฒ f ๏จ t ๏ฉ dx = ๏ฒ f ๏จ x ๏ฉ dx a a ๏ฉ = ๏ฒ f ๏จ t ๏ฉ dt ๏ฒ0 f ๏จ x dx ๏ฉ = -๏ฒa f ๏จ x ๏ฉ dx ๏น๏บ๏ป a a 0 0 0 0 ๏ช๏ซ ๏ฒ f ๏จ x ๏ฉ dx = ๏ฒ f ๏จ a - x ๏ฉ dx a a ๏ 0 0 ฯ 2 sinx I= ๏ฒ dx .......... ๏จ1๏ฉ 0 sinx + cosx ฯ 2 ๏จ sin ฯ - x 2 ๏ฉ I= ๏ฒ dx 0 sin ๏จ ฯ - x ๏ฉ + cos ๏จ ฯ - x ๏ฉ 2 2 ฯ 2 cosx I= ๏ฒ dx............. ๏จ 2 ๏ฉ 0 cosx + sinx ๏จ1๏ฉ + ๏จ 2 ๏ฉ gives ฯ 2 ๏ฆ sinx + cosx ๏ถ 2I = ๏ฒ ๏ง๏ง ๏ท๏ทdx 0 ๏จ cosx + sinx ๏ธ ฯ 2 = ๏ฒ 1 dx 0 2I = ๏ x ๏0 2 ฯ ฯ 2I = 2 ฯ ๏ I= . 4 ๏ฌKx + 1, if x ๏ฃ ฯ b) Find the value of K, if f ๏จ x ๏ฉ = ๏ญ is continuous at x = ฯ. ๏ฎcosx , if x > ฯ Solution: The function is defined at x = ฯ. i.e., f ๏จ x ๏ฉ = Kx +1 ๏ f ๏จ ฯ ๏ฉ = Kฯ +1 LH L ๏ฝ lim- f ๏จ x ๏ฉ = lim Kx +1= Kฯ +1 x ๏ฎฯ x ๏ฎฯ+ R H L = lim- Kx +1= lim cosx = cosฯ x ๏ฎฯ x ๏ฎฯ+ f is continuous at x = ฯ ๏ Kฯ +1 = cosฯ HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI Kฯ +1 = -1 -2 K= ฯ 66. a) Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area. Solution: Let a rectangle of length l and breadth b be inscribed in the given circle of radius a. Then, the diagonal passes through the centre and is of length 2a cm. Now, by applying the Pythagoras theorem, we have: (2a)2 ๏ฝ l 2 ๏ซ b2 ๏ b2 ๏ฝ 4a2 ๏ญ l 2 ๏ b ๏ฝ 4a2 ๏ญ l 2 Area of triangle, A ๏ฝ l 4a2 ๏ญ l 2 dA 1 Therefore, ๏ฝ 4a 2 ๏ญ l 2 ๏ซ l (๏ญ2l ) dl 2 4a 2 ๏ญ l 2 l2 ๏ฝ 4a 2 ๏ญ l 2 ๏ญ 4a 2 ๏ญ l 2 4a 2 ๏ญ 2l 2 ๏ฝ 4a 2 ๏ญ l 2 (๏ญ2l ) 4a 2 ๏ญ l 2 (๏ญ4l ) ๏ญ (4a 2 ๏ญ 2l 2 ) 2 4a 2 ๏ญ l 2 2 d A ๏ฝ dl 2 4a 2 ๏ญ l 2 (4a 2 ๏ญ l 2 )(๏ญ4l ) ๏ซ l (4a 2 ๏ญ l 2 ) ๏ฝ 3 (4a 2 ๏ญ l 2 ) 2 ๏ญ12a 2l ๏ซ 2l 3 ๏ฝ 3 (4a 2 ๏ญ l 2 ) 2 ๏ญ2l (6a 2 ๏ญ l 2 ) ๏ฝ 3 (4a 2 ๏ญ l 2 ) 2 dA Now, ๏ฝ0 dl 4a 2 ๏ญ 2l 2 Hence, ๏ ๏ฝ0 4a 2 ๏ญ l 2 ๏ 4a2 ๏ฝ 2l 2 ๏ l ๏ฝ 2a HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI Thus, b ๏ฝ 4a2 ๏ญ 2a2 ๏ฝ 2a2 = 2a When, l ๏ฝ 2a Then, d 2 A ๏ญ2 ๏ฝ ๏จ ๏ฉ 2a ๏จ 6a 2 ๏ญ 2a 2 ๏ฉ dl 2 2 2a 3 ๏ญ8 2a 3 ๏ฝ 2 2a 3 ๏ฝ ๏ญ4 ๏ผ 0 By the second derivative test, when l ๏ฝ 2a , then the area of the rectangle is the maximum. Since, l ๏ฝ b ๏ฝ 2a the rectangle is a square. Hence, it has been proved that of all the rectangles inscribed in the given fixed circle, the square has the maximum area. 1 a a2 b) Prove that 1 b b 2 = ๏จ a - b ๏ฉ๏จ b - c ๏ฉ๏จ c- a ๏ฉ . 1 c c2 1 a a2 Solution: L.H.S. = 1 b b 2 1 c c2 By applying R1๏ฎR1 โ R2, R2๏ฎR2 โ R3 0 a - b a 2 - b2 = 0 b - c b2 - c2 1 c c2 0 a-b ๏จ a + b ๏ฉ๏จ a - b ๏ฉ = 0 b-c ๏จ b + c ๏ฉ๏จ b - c ๏ฉ 1 c c2 Taking (a โ b) and (b โ c) common from R1 and R2 respectively. 0 1 a + b = ๏จ a - b ๏ฉ๏จ b - c ๏ฉ 0 1 b + c 1 c c2 Expanding along R1 = (a - b) (b -c) [0(c2 - bc - c2) -1 (0 - b - c) + (a + b) (0 - 1)] = (a - b) (b -c) [0 + b + c - a - b] = (a- b) (b - c) (c - a) *************************************************************************************** HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI DEPARTMENT OF MATHEMATICS ๏ Mr. Ashwath . S. L ๏ Mr. Ganapathi K. S ๏ Mr. Nandeesh H. B ๏ Mr. Adithya Vati K ๏ Mr. Rakshith B. S ๏ Mr. Sumanth Damle CREATIVE EDUCATION FOUNDATION (R) www.creativeedu.in Phone No: 9019844492 HKS P U COLLEGE, HASSAN CREATIVE P U COLLEGE, KARKALA CREATIVE P U COLLEGE, UDUPI
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-