No Distribusi FKP Mean / πΈ ( π ) πππ ( π ) FPM ( π π ( π‘ ) ) 1. Bernoulli, π ~ π ( 1 , π ) π ( π₯ ) = { π π₯ ( 1 β π ) 1 β π₯ , π₯ = 0 , 1 0 , π₯ ππππππ¦π π ππ ( 1 β π ) + π π π‘ 2. Binomial, π ~ π ( π , π ) atau π ~ π ( π₯ ; π , π ) π ( π₯ ) = { ( π π₯ ) π π₯ ( 1 β π ) π β π₯ , π₯ = 0 , 1 , ... , π 0 , π₯ ππππππ¦π ππ ππ π [ ( 1 β π ) + π π π‘ ] π 3. Binom Negatif, π ~ ππ΅ ( π₯ ; π , π ) π ( π₯ ; π , π ) = { ( π₯ β 1 π β 1 ) π π π π₯ β π , π₯ = π , π + 1 , π + 2 , ... 0 , π₯ ππππππ¦π π π ππ π 2 ( π π π‘ ) π ( 1 β π π π‘ ) β π atau ( π π π‘ 1 β π π π‘ ) π 4. Geometrik, π ~ πΊππ ( π ) π ( π₯ ; π ) = { π π π₯ β 1 , π₯ = 1 , 2 , 3 , ... 0 , π₯ ππππππ¦π 1 π 1 β π π 2 π π π‘ 1 β π π π‘ 5. Poisson, π ~ πππ ( π ) π ( π₯ ) = { π β π π π₯ π₯ ! , π₯ = 0 , 1 , 2 , ... 0 , π₯ ππππππ¦π π π π β π ( 1 β π π‘ ) 6. Gamma, Jika πΌ , π½ > 0 β π ~ πΊ ( πΌ , π½ ) π ( π₯ ) = { 1 Ξ ( πΌ ) π½ πΌ π₯ πΌ β 1 π β ( π₯ π½ ) , π₯ > 0 0 , π₯ ππππππ¦π πΌπ½ πΌ π½ 2 ( 1 β π½π‘ ) β πΌ , π‘ < 1 π½ 7. Chi Kuadrat, π ~ π ( π ) 2 π ( π₯ ) = { 1 Ξ ( π 2 ) 2 π 2 π₯ π 2 β 1 π β ( π₯ 2 ) , π₯ > 0 0 , π₯ ππππππ¦π r=bilangan bulat positif π 2r ( 1 β 2 π‘ ) β π 2 8. Eksponensial, π ~ πππ ππππππ πππ ( π ) π ( π₯ ) = { π π β ππ₯ , π₯ > 0 , π > 0 0 , π₯ ππππππ¦π π β 1 π β 2 ( 1 β 1 π π‘ ) 9. Beta, π ~ π΅πΈππ΄ ( πΌ , π½ ) π ( π₯ ) = { 1 π΅ ( πΌ β π½ ) π₯ πΌ β 1 ( 1 β π₯ ) π½ β 1 0 , π₯ ππππππ¦π , 0 < π₯ < 1 πΌ πΌ + π½ πΌπ½ ( πΌ + π½ + 1 ) ( πΌ + π½ ) 2 10. Uniform, π ~ π ( π , π ) π ( π₯ ) = { 1 π β π , π < π₯ < π 0 , π₯ ππππππ¦π π + π 2 ( π β π ) 2 12 π ππ‘ β π ππ‘ π‘ ( π β π ) 11. Normal, π ~ π ( π , π 2 ) π ( π₯ ) = { 1 π β 2 π π β 1 2 [ π₯ β π π ] 2 , β β < π₯ < β 0 , π₯ ππππππ¦π β β < π < β πππ n π 2 > 0 π π 2 π 1 2 π 2 π‘ 2 + π‘π