Karsten König, Andreas Ostendorf (Eds.) Optically Induced Nanostructures Also of Interest Advances in High Field Laser Physics Zhengming Shen et al., 2016 ISBN 978-3-11-030426-8, e-ISBN (PDF) 978-3-11-030441-1, e-ISBN (EPUB) 978-3-11-038800-8 Advances in Ultrafast Optics Zhiyi Wei et al., 2016 ISBN 978-3-11-030436-7, e-ISBN (PDF) 978-3-11-030455-8, e-ISBN (EPUB) 978-3-11-038283-9 Advanced Optical Technologies Michael Pfeffer (Editor-in-Chief) ISSN 2192-8576, e-ISSN 2192-8584 Biomedical Engineering Olaf Dössel (Editor-in-Chief) ISSN 0013-5585, e-ISSN 1862-278X Photonics & Lasers in Medicine Frank Frank, Lothar Lilge, Carsten m. Philipp, Ronald Sroka (Editors-in-Chief) ISSN 2193-0635, e-ISSN 2193-0643 Optically Induced Nanostructures | Biomedical and Technical Applications Edited by Karsten König and Andreas Ostendorf Physics and Astronomy Classification Scheme 2010 42, 68, 78, 81, 87 Editors Prof. Dr. rer. nat. habil. Karsten König Department of Biophotonics and Laser Technology Saarland University Campus A5.1 66123 Saarbrücken Germany k.koenig@blt.uni-saarland.de Prof. Dr.-Ing. habil. Andreas Ostendorf Applied Laser Technology Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany andreas.ostendorf@ruhr-uni-bochum.de ISBN 978-3-11-033718-1 e-ISBN (PDF) 978-3-11-035432-4 e-ISBN (EPUB) 978-3-11-038350-8 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. For details go to http://creativecommons.org/licenses/by-nc-nd/3.0/. Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2015 Walter de Gruyter Inc., Berlin/Boston The book is published with open access at www.degruyter.com. Cover image: Femtosecond laser nanoprocessing of a blood cell nucleus using Bessel beams. Typesetting: PTP-Berlin, Protago-TEX-Production GmbH Printing and binding: CPI books GmbH, Leck ♾ Printed on acid-free paper Printed in Germany www.degruyter.com Foreword 1 2015 is the year that the United Nations has declared as the International Year of Light Light-based technologies change our economies and lifestyles. They become vital in our daily lives. Also the winners of the latest Nobel Prizes focus on photonics. The Nobel Prize for physics had been awarded to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura who developed the blue LED. Stefan Hell, Eric Betzig and William Moerner won the Nobel Prize for chemistry for super-resolved fluorescence microscopy with a resolution far beyond Abbe’s diffraction limit of about half the wavelength (200 nanometers). Pushing optical microscopy into the nanodimension with certain fluorescent molecules, microscopy “turned” into nanoscopy . A resolution below 10 nm has been achieved in fluorescence nanoscopy using visible light. But microscopes and nanoscopes are not just analytical tools. They can also op- erate as highly precise nanomaching tools with features sizes below 100 nanometers even when operating in the near infrared (NIR). Non-linear optics, in particular multi- photon effects, made that possible. The PhD student and later Nobel Prize Winner Maria Göppert predicted multi- photon effects in the late twenties of the last century. It took about 30 years until the first laser was built to prove her hypothesis by the generation of second harmonic generation (SHG) and two-photon fluorescence in 1961. Again 30 years later the first two-photon laser microscope was built utilizing a femtosecond dye laser. One decade later, multiphoton tomographs became medical devices and the first stimulated emission depletion (STED) microscope was realized. Both systems were based on titanium:sapphire femtosecond laser technology. With the new millennium, femtosecond NIR laser systems became novel micro- machining tools in material production and in refractive eye surgery. And within the last 10 years, femtosecond NIR laser technology “turned” micro- machining into nanomachining. These novel nonlinear photonic nanoprocessing tools are based on two-photon and STED-lithography as well as on multiphoton ionization and plasma formation. In-bulk nanoprocessing became feasible when using non-ultraviolet (UV) laser radiation. This book refers to the latest developments in laser-produced sub-100 nanometer features, typically with femtosecond NIR laser systems. 15 research groups consisting of engineers and natural scientists describe the basics of femtosecond laser – material interaction and the interior of the novel nanotools. Technical and biomedical applica- tions such as STED-lithography to develop protein nanoanchors, production of ultra- thin resists, biochemical sensors and scaffolds, laser-induced periodic nanostructures for friction control in titanium and steel as well as virus-free optical reprogramming of cells are demonstrated. vi | Foreword 1 The editors and authors of this book wish to thank the German Science Foundation for the possibility to publish their latest results within this open access book and for long-term funding within the Key Project SPP 1327 (2008–2015). May 2015 Karsten König Biophotonics and Laser Technology Saarland University Germany Andreas Ostendorf Applied Laser Technology Ruhr University Bochum Germany Foreword 2 The invention of lasers in 1960 marked the birth of an entirely new era of optical science and technology. The combination of a laser beam and an optical microscope offers a way to confine a laser beam to a region smaller than the wavelength of the beam. For a visible wavelength beam, the size of this small region can be down to 200–300 nm, determined by Abbe’s diffraction law. Scanning this focused spot across a sample under illumination leads to the invention of laser scanning microscopy such as confocal microscopy which gives an optical sectioning property for three- dimensional (3D) imaging. Due to the strong confinement of the light beam, the intensity in the focal region can be used to induce the localized physical or chemical processes in a sample under illumination, which provides a powerful way to fabricate sub-wavelength structures in the sample. The integration of ultrafast laser beams with an optical microscope was a mile- stone in optical microscopy as it allows for nonlinear excitation in the focal region. Nonlinear excitation such as two-photon excitation removes the necessity of using a confocal pinhole for 3D imaging. In the context of optically induced fabrication, two- photon excitation is a flexible tool for 3D micro-fabrication. Because of the threshold effect associated with the laser–material interaction, the 3D fabrication by a femto- second laser beam usually results in a 3D structure with a feature size smaller than the diffraction limit. The core of the stimulated emission depletion microscopy method, invented by the 2014 Nobel Laureate, Stefan Hell, is the use of two laser beams rather than one. In this case, the first laser beam is the induction of fluorescence while the second one is to terminate it. With an appropriate spatial overlapping arrangement of the two beams, one can break the diffraction limited resolution barrier, leading to nanoscopy. Inspired by this idea, over the last 5 years, many research groups have embarked on laser-induced fabrication by coupling two laser beams, one for photoinduction and the other for photo-inhibition, into a microscope. It is now possible to generate 3D nanostructures with a feature size down to 9 nm. The current book timely presents the progress in laser-induced micro- and nano- fabrication. It will be a useful reference for scientists and students who wish to get involved in 3D laser direct writing for nano-science and nano-engineering. May 2015 Min Gu Centre of Micro-Photonics Swinburne University of Technology Australia Satoshi Kawata Photonics Advanced Research Center Osaka University Japan Contents Foreword 1 | v Foreword 2 | vii Authors | xi A. Ostendorf and K. König Tutorial | xxiii Part I: Technical applications K. König, H. Seidel, M. Afshar, M. Klötzer, D. Feili, and M. Straub 1 Nanoprocessing using near-infrared sub-15 femtosecond laser microscopes | 3 M. Reininghaus, D. Ivanov, T. W. W. Maß, S. Eckert, L. Juschkin, M. E. Garcia, T. Taubner, and R. Poprawe 2 Nanophotonic applications of fs-laser radiation induced nanostructures and their theoretical description | 25 N. Götte, T. Kusserow, T. Winkler, C. Sarpe, L. Englert, D. Otto, T. Meinl, Y. Khan, B. Zielinski, A. Senftleben, M. Wollenhaupt, H. Hillmer, and T. Baumert 3 Temporally shaped femtosecond laser pulses for creation of functional sub-100 nm structures in dielectrics | 47 C. Reinhardt, V. Ferreras Paz, L. Zheng, K. Kurselis, T. Birr, U. Zywietz, B. Chichkov, K. Frenner, and W. Osten 4 Design and fabrication of near- to far-field transformers by sub-100 nm two-photon polymerization | 73 F. Zimmermann, S. Richter, R. Buschlinger, S. Shukla, R. Heintzmann, U. Peschel, and S. Nolte 5 Ultrashort pulse-induced periodic nanostructures in bulk glass: from fundamentals to applications in high-resolution microscopy | 93 N. Hartmann, S. Franzka, A. Schröter, A. Aumann, and A. Ostendorf 6 Nonlinear processing and multiphoton ablation of self-assembled monolayers for application as ultrathin resists and in biochemical sensors | 117 x | Contents J. Bonse, S. Höhm, M. Hartelt, D. Spaltmann, S. Pentzien, R. Koter, S. Marschner, A. Rosenfeld, and J. Krüger 7 Femtosecond laser-induced surface nanostructures for tribological applications | 141 Part II: Biomedical applications A. Uchugonova, H. G. Breunig, C. Augspurger, M. Monaghan, K. Schenke-Layland, and K. König 1 Optical reprogramming and optical characterization of cells using femtosecond lasers | 159 M. Steger, G. Abagnale, E. Bremus-Köbberling, W. Wagner, and A. Gillner 2 Nanoscale biofunctionalization of polymer surfaces by laser treatment for controlled cellular differentiation | 179 V. Coger, N. Million, P. Wilke, A. Pich, P. M. Vogt, K. Reimers, and S. Barcikowski 3 Laser-generated bioactive hydrogels as ion-release systems for burn wound therapy | 199 K. Wallat, M. M. Gepp, S. Berger, R. Le Harzic, J. C. Neubauer, H. Zimmermann, F. Stracke, and M. Epple 4 Nanoparticle-loaded bioactive hydrogels | 217 F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles 5 Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications | 239 P. Reichenbach, U. Georgi, U. Oertel, T. Kämpfe, B. Nitzsche, B. Voit, and L. M. Eng 6 Optical antennae for near-field induced nonlinear photochemical reactions of photolabile azo- and amine groups | 267 I. Alexeev, U. Quentin, K.-H. Leitz, J. Strauß, M. Baum, F. Stelzle, and M. Schmidt 7 Optical trap assisted sub diffraction limited laser structuring | 283 T. A. Klar 8 STED lithography and protein nanoanchors | 303 Index | 325 Authors Giulio Abagnale Laser Technology RWTH Aachen University 52074 Aachen Germany Maziar Afshar Department of Micromechanics, Microfluidics and Microactuators Saarland University Campus A5.1 66123 Saarbrücken Germany Ilya Alexeev Institute of Photonic Technologies University of Erlangen-Nuremberg Konrad-Zuse-Straße 3 91052 Erlangen Germany and Erlangen Graduate School in Advanced Optical Technologies Paul-Gordan-Straße 6 91052 Erlangen Germany Thomas S. Asche Leibniz Universität Hannover Institute of Inorganic Chemistry Callinstraße 9 30167 Hannover Germany Caroline Augspurger Department of Women’s Health Research Institute for Women’s Health University Hospital of the Eberhard Karls University Tübingen Silcherstr. 7/1 72076 Tübingen Germany Andreas Aumann Helmholtz Institute for Biomedical Engineering, Stem Cell Biology, and Cellular Engineering Ruhr-University Bochum Applied Laser Technologies Universitätsstr. 150 44780 Bochum Germany Stephan Barcikowski Technical Chemistry I and Center for Nano- integration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstr. 5–7 45141 Essen Germany Marcus Baum Institute of Photonic Technologies University of Erlangen-Nuremberg Konrad-Zuse-Straße 3 91052 Erlangen Germany and Erlangen Graduate School in Advanced Optical Technologies Paul-Gordan-Straße 6 91052 Erlangen Germany Thomas Baumert University of Kassel Institute of Physics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Carolin Beck University Hospital Würzburg Tissue Engineering and Regenerative Medicine Roentgenring 11 97070 Würzburg Germany xii | Authors Peter Behrens Leibniz Universität Hannover Institute of Inorganic Chemistry Callinstraße 9 30167 Hannover Germany Sabrina Berger Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) University of Duisburg-Essen Universitätsstr. 5–7 45117 Essen Germany Tobias Birr Laser Zentrum Hannover Hollerithallee 8 30419 Hannover Germany Jörn Bonse BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany Elke Bremus-Köbberling Laser Technology RWTH Aachen University 52074 Aachen Germany and Fraunhofer Institute for Laser Technology 52074 Aachen Germany Hans Georg Breunig Department of Biophotonics and Laser Technology Saarland University Campus A5.1 66123 Saarbrücken Germany Frank Burmeister Friedrich-Schiller-Universität Jena Abbe Center of Photonics Institute of Applied Physics Albert-Einstein-Straße 15 07745 Jena Germany and Fraunhofer Institute for Applied Optics and Precision Engineering Albert-Einstein-Straße 7 07745 Jena Germany Robert Buschlinger Institute of Optics, Information and Photonics University of Erlangen-Nürnberg Haberstraße 9a 90158 Erlangen Germany Boris Chichkov Laser Zentrum Hannover Hollerithallee 8 30419 Hannover Germany Vincent Coger Department of Plastic, Hand- and Reconstructive Surgery Hannover Medical School Carl-Neuberg-Str. 1 30625 Hannover Germany Sandro Eckert Laser Technology RWTH Aachen University 52074 Aachen Germany Lukas M. Eng Institut für Angewandte Photophysik Technische Universität Dresden 01062 Dresden Germany Authors | xiii Lars Englert University of Oldenburg Institute of Physics Carl-von-Ossietzky-Straße 9–11 26129 Oldenburg Germany Matthias Epple Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) University of Duisburg-Essen Universitätsstr. 5–7 45117 Essen Germany Dara Feili Department of Micromechanics, Microfluidics and Microactuators Saarland University Campus A5.1 66123 Saarbrücken Germany Valeriano Ferreras Paz Institut für Technische Optik Universität Stuttgart Pfaffenwaldring 9 70569 Stuttgart Germany Sebastian Fessel Leibniz Universität Hannover Institute of Inorganic Chemistry Callinstraße 9 30167 Hannover Germany Steffen Franzka Department of Chemistry University of Duisburg-Essen Universitätsstr. 5 45141 Essen Germany and CENIDE – Center for Nanointegration Duisburg-Essen NanoEnergieTechnikZentrum Carl-Benz-Str. 199 47057 Duisburg Germany Karsten Frenner Institut für Technische Optik Universität Stuttgart Pfaffenwaldring 9 70569 Stuttgart Germany Martin Garcia Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSAT) Universität Kassel Germany Karl-Heinz Gärtner University Hospital Würzburg Tissue Engineering and Regenerative Medicine Roentgenring 11 97070 Würzburg Germany Ulrike Georgi Leibniz-Institut für Polymerforschung Dresden e. V. Hohe Straße 6 01069 Dresden Germany Michael M. Gepp Fraunhofer Institute for Biomedical Engineering IBMT Ensheimer Str. 48 66386 St. Ingbert Germany Arnold Gillner Laser Technology RWTH Aachen University 52074 Aachen Germany xiv | Authors Nadine Götte University of Kassel Institute of Physics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Manfred Hartelt BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany Nils Hartmann Department of Chemistry University of Duisburg-Essen Universitätsstr. 5 45141 Essen Germany and CENIDE – Center for Nanointegration Duisburg-Essen NanoEnergieTechnikZentrum Carl-Benz-Str. 199 47057 Duisburg Germany Rainer Heintzmann Institute of Physical Chemistry Friedrich-Schiller-University Jena Helmholtzweg 4 07743 Jena Germany and Leibniz Institute of Photonic Technology Albert-Einstein-Straße 9 07745 Jena Germany and King’s College London Randall Division of Cell and Molecular Biophysics London UK Hartmut Hillmer University of Kassel Institute of Nanostructure Technologies and Analytics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Sandra Höhm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) Max-Born-Straße 2A 12489 Berlin Germany Ruth Houbertz Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany and Multiphoton Optics GmbH Auweg 27 63920 Grossheubach Germany Dmitry Ivanov Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSAT) Universität Kassel Germany Pascal Josten Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany Larissa Juschkin Institute of Physics EUV Sources and Applications and JARA – Fun- damentals of Future Information Technologies RWTH Aachen University 52056 Aachen Germany Authors | xv Thomas Kämpfe Institut für Angewandte Photophysik Technische Universität Dresden 01062 Dresden Germany Yousuf Khan University of Kassel Institute of Nanostructure Technologies and Analytics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Thomas A. Klar Institut für Angewandte Physik Johannes Kepler Universität Linz 4040 Linz Austria Madlen Klötzer Department of Biophotonics and Laser Technology Saarland University Campus A5.1 66123 Saarbrücken Germany Karsten König Department of Biophotonics and Laser Technology Saarland University Campus A5.1 66123 Saarbrücken Germany Robert Koter BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany Jörg Krüger BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany Kestutis Kurselis Laser Zentrum Hannover Hollerithallee 8 30419 Hannover Germany Thomas Kusserow University of Kassel Institute of Nanostructure Technologies and Analytics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Ronan Le Harzic Fraunhofer Institute for Biomedical Engineering IBMT Ensheimer Str. 48 66386 St. Ingbert Germany Karl-Heinz Leitz Institute of Photonic Technologies University of Erlangen-Nuremberg Konrad-Zuse-Straße 3 91052 Erlangen Germany and Erlangen Graduate School in Advanced Optical Technologies Paul-Gordan-Straße 6 91052 Erlangen Germany Stephan Marschner Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) Max-Born-Straße 2A 12489 Berlin Germany Tobias Maß Institute of Physics (IA) and JARA – Fundamen- tals of Future Information Technologies RWTH Aachen University 52056 Aachen Germany xvi | Authors Tamara Meinl University of Kassel Institute of Nanostructure Technologies and Analytics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Nina Million Technical Chemistry I and Center for Nano- integration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstr. 5–7 45141 Essen Germany Michael Monaghan Department of Cell and Tissue Engineering Fraunhofer IGB Stuttgart Nobelstr. 12 70569 Stuttgart Germany Philipp Wilke Interactive Materials Research Institute for Macromolecular and Technical Chemistry RWTH Aachen University Forckenbeckstr. 50 52074 Aachen Germany Julia C. Neubauer Fraunhofer Institute for Biomedical Engineering IBMT Ensheimer Str. 48 66386 St. Ingbert Germany Joachim Nickel University Hospital Würzburg Chair Tissue Engineering and Regenerative Medicine Roentgenring 11 97070 Würzburg Germany and Fraunhofer Institiute for Interfacial Engineering and Biotechnology IGB Project Group Regenerative Therapies in Oncology Roentgenring 11 97070 Würzburg Germany Bert Nitzsche Max-Planck-Institut für Molekulare Zellbiologie und Genetik Photenhauerstraße 108 01307 Dresden Germany Stefan Nolte Institute of Applied Physics Abbe Center of Photonics Friedrich-Schiller-University Jena Max-Wien-Platz 1 07743 Jena Germany and Fraunhofer Institute for Applied Optics and Precision Engineering Albert-Einstein-Straße 7 07745 Jena Germany Kerstin Obel Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany Ulrich Oertel Leibniz-Institut für Polymerforschung Dresden e. V. Hohe Straße 6 01069 Dresden Germany Wolfgang Osten Institut für Technische Optik Universität Stuttgart Pfaffenwaldring 9 70569 Stuttgart Germany Authors | xvii Andreas Ostendorf Ruhr University Bochum Applied Laser Technologies Universitätsstr. 150 44780 Bochum Germany Dirk Otto University of Kassel Institute of Physics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Simone Pentzien BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany Ulf Peschel Institute of Optics, Information and Photonics University of Erlangen-Nürnberg Haberstraße 9a 90158 Erlangen Germany Andrij Pich Interactive Materials Research Institute for Macromolecular and Technical Chemistry RWTH Aachen University Forckenbeckstr. 50 52074 Aachen Germany Reinhart Poprawe Laser Technology RWTH Aachen University 52074 Aachen Germany and Fraunhofer Institute for Laser Technology 52074 Aachen Germany Ulf Quentin Institute of Photonic Technologies University of Erlangen-Nuremberg Konrad-Zuse-Straße 3 91052 Erlangen Germany and Erlangen Graduate School in Advanced Optical Technologies Paul-Gordan-Straße 6 91052 Erlangen Germany Philipp Reichenbach Institut für Angewandte Photophysik Technische Universität Dresden 01062 Dresden Germany Kerstin Reimers Department of Plastic, Hand- and Reconstructive Surgery Hannover Medical School Carl-Neuberg-Str. 1 30625 Hannover Germany Carsten Reinhardt Laser Zentrum Hannover Hollerithallee 8 30419 Hannover Germany Martin Reininghaus Laser Technology RWTH Aachen University 52074 Aachen Germany and Fraunhofer Institute for Laser Technology 52074 Aachen Germany xviii | Authors Sören Richter Institute of Applied Physics Abbe Center of Photonics Friedrich-Schiller-University Jena Max-Wien-Platz 1 07743 Jena Germany Arkadi Rosenfeld Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) Max-Born-Straße 2A 12489 Berlin Germany Cristian Sarpe University of Kassel Institute of Physics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Katja Schenke-Layland Department of Women’s Health Research Institute for Women’s Health University Hospital of the Eberhard Karls University Tübingen Silcherstr. 7/1 72076 Tübingen Germany Michael Schmidt Institute of Photonic Technologies University of Erlangen-Nuremberg Konrad-Zuse-Straße 3 91052 Erlangen Germany and Erlangen Graduate School in Advanced Optical Technologies Paul-Gordan-Straße 6 91052 Erlangen Germany Andreas M. Schneider Leibniz Universität Hannover Institute of Inorganic Chemistry Callinstraße 9 30167 Hannover Germany Anja Schröter Department of Chemistry University of Duisburg-Essen Universitätsstr. 5 45141 Essen Germany and CENIDE – Center for Nanointegration Duisburg-Essen NanoEnergieTechnikZentrum Carl-Benz-Str. 199 47057 Duisburg Germany Helmut Seidel Department of Micromechanics, Microfluidics and Microactuators Saarland University Campus A5.1 66123 Saarbrücken Germany Arne Senftleben University of Kassel Institute of Physics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Sapna Shukla Institute of Physical Chemistry Friedrich-Schiller-University Jena Helmholtzweg 4 07743 Jena Germany and Leibniz Institute of Photonic Technology Albert-Einstein-Straße 9 07745 Jena Germany Authors | xix Dirk Spaltmann BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Germany Sönke Steenhusen Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany Michael Steger Laser Technology RWTH Aachen University 52074 Aachen Germany and Fraunhofer Institute for Laser Technology 52074 Aachen Germany Florian Stelzle Erlangen Graduate School in Advanced Optical Technologies Paul-Gordan-Straße 6 91052 Erlangen Germany and Department of Oral and Maxillofacial Surgery University Hospital Erlangen Glückstraße 11 91054 Erlangen Germany Frank Stracke Fraunhofer Institute for Biomedical Engineering IBMT Ensheimer Str. 48 66386 St. Ingbert Germany Martin Straub Department of Biophotonics and Laser Technology Saarland University Campus A5.1 66123 Saarbrücken Germany Johannes Strauß Institute of Photonic Technologies University of Erlangen-Nuremberg Konrad-Zuse-Straße 3 91052 Erlangen Germany and Erlangen Graduate School in Advanced Optical Technologies Paul-Gordan-Straße 6 91052 Erlangen Germany Thomas Taubner Institute of Physics (IA) and JARA – Fundamen- tals of Future Information Technologies RWTH Aachen University 52056 Aachen Germany Nico Tucher Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany Andreas Tünnermann Friedrich-Schiller-Universität Jena Abbe Center of Photonics Institute of Applied Physics Albert-Einstein-Straße 15 07745 Jena Germany and Abbe School of Photonics Friedrich-Schiller-Universität Jena Max-Wien-Platz 1 07743 Jena Germany and xx | Authors Fraunhofer Institute for Applied Optics and Precision Engineering Albert-Einstein-Straße 7 07745 Jena Germany Aisada Uchugonova Saarland University Department of Biophotonics and Laser Technology Campus A5.1 66123 Saarbrücken Germany Peter M. Vogt Department of Plastic, Hand- and Reconstructive Surgery Hannover Medical School Carl-Neuberg-Str. 1 30625 Hannover Germany Brigitte Voit Leibniz-Institut für Polymerforschung Dresden e. V. Hohe Straße 6 01069 Dresden Germany Wolfgang Wagner Helmholtz Institute for Biomedical Engineering, Stem Cell Biology, and Cellular Engineering Laser Technology RWTH Aachen University 52074 Aachen Germany Kathrin Wallat Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) University of Duisburg-Essen Universitätsstr. 5–7 45117 Essen Germany Heike Walles University Hospital Würzburg Chair Tissue Engineering and Regenerative Medicine Roentgenring 11 97070 Würzburg Germany and Fraunhofer Institiute for Interfacial Engineering and Biotechnology IGB Project Group Regenerative Therapies in Oncology Roentgenring 11 97070 Würzburg Germany Thomas Winkler University of Kassel Institute of Physics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany Matthias Wollenhaupt University of Oldenburg Institute of Physics Carl-von-Ossietzky-Straße 9–11 26129 Oldenburg Germany Herbert Wolter Fraunhofer Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany Lei Zheng Laser Zentrum Hannover Hollerithallee 8 30419 Hannover Germany Bastian Zielinski University of Kassel Institute of Physics and CINSaT Heinrich-Plett-Str. 40 34132 Kassel Germany