Metabolically Healthy Obesity www.mdpi.com/journal/nutrients Edited by Catherine M. Phillips Printed Edition of the Special Issue Published in Nutrients nutrients Metabolically Healthy Obesity Special Issue Editor Catherine M. Phillips MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Catherine M. Phillips HRB Centre for Diet and Health Research University College Cork University College Dublin Ireland Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Nutrients (ISSN 2072-6643) in 2016 (available at: http://www.mdpi.com/journal/nutrients/special issues/ metabolically healthy obesity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Lastname, F.M.; Lastname, F.M. Article title. Journal Name Year Article number , page range. First Edition 2018 ISBN 978-3-03842-686-8 (Pbk) ISBN 978-3-03842-687-5 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c © 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Table of Contents About the Special Issue Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Preface to ”Metabolically Healthy Obesity” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Arturo Pujia, Carmine Gazzaruso, Yvelise Ferro, Elisa Mazza, Samantha Maurotti, Cristina Russo, Veronica Lazzaro, Stefano Romeo and Tiziana Montalcini Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals doi:10.3390/nu8010002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Juliana Bermdez-Cardona and Claudia Velsquez-Rodrguez Profile of Free Fatty Acids and Fractions of Phospholipids, Cholesterol Esters and Triglycerides in Serum of Obese Youth with and without Metabolic Syndrome doi:10.3390/nu8020054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Sabri Ahmed Rial, Antony D. Karelis, Karl-F. Bergeron and Catherine Mounier Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals doi:10.3390/nu8050281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Yong Zhang, Fenxia Li, Fu-Qiang Liu, Chao Chu, Yang Wang, Dan Wang, Tong-Shuai Guo, Jun-Kui Wang, Gong-Chang Guan, Ke-Yu Ren and Jian-Jun Mu Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity? doi:10.3390/nu8060323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Bndicte Allam-Ndoul, Frdric Gunard, Vronique Garneau, Hubert Cormier, Olivier Barbier, Louis Prusse and Marie-Claude Vohl Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status doi:10.3390/nu8060324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Joanna Gajewska, Alina Kuryowicz, Ewa Mierzejewska, Jadwiga Ambroszkiewicz, Magdalena Chechowska, Halina Weker and Monika Puzianowska-Kunicka Complementary Effects of Genetic Variations in LEPR on Body Composition and Soluble Leptin Receptor Concentration after 3-Month Lifestyle Intervention in Prepubertal Obese Children doi:10.3390/nu8060328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Araceli Muoz-Garach, Isabel Cornejo-Pareja and Francisco J. Tinahones Does Metabolically Healthy Obesity Exist? doi:10.3390/nu8060320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Kim Anh Nguyen, Nasheeta Peer, Anniza de Villiers, Barbara Mukasa, Tandi E. Matsha, Edward J. Mills and Andre Pascal Kengne The Distribution of Obesity Phenotypes in HIV-Infected African Population doi:10.3390/nu8060299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Francesco Savino, Allegra Sardo, Lorenza Rossi, Stefania Benetti, Andrea Savino and Leandra Silvestro Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values doi:10.3390/nu8060383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 iii Wei Yang, Jian-Ping Li, Yan Zhang, Fang-Fang Fan, Xi-Ping Xu, Bin-Yan Wang, Xin Xu, Xian-Hui Qin, Hou-Xun Xing, Gen-Fu Tang, Zi-Yi Zhou, Dong-Feng Gu, Dong Zhao and Yong Huo Association between Body Mass Index and All-Cause Mortality in Hypertensive Adults: Results from the China Stroke Primary Prevention Trial (CSPPT) doi:10.3390/nu8060384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Mara Guillermina Zubira, Ana Alzamendi, Griselda Moreno, Andrea Portales, Daniel Castrogiovanni, Eduardo Spinedi and Andrs Giovambattista Relationship between the Balance of Hypertrophic/Hyperplastic Adipose Tissue Expansion and the Metabolic Profile in a High Glucocorticoids Model doi:10.3390/nu8070410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Ruizhi Zheng, Chengguo Liu, Chunmei Wang, Biao Zhou, Yi Liu, Feixia Pan, Ronghua Zhang and Yimin Zhu Natural Course of Metabolically Healthy Overweight/Obese Subjects and the Impact of Weight Change doi:10.3390/nu8070430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Joane Matta, Lara Nasreddine, Lamis Jomaa, Nahla Hwalla, Abla Mehio Sibai, Sebastien Czernichow, Leila Itani and Farah Naja Metabolically Healthy Overweight and Obesity Is Associated with Higher Adherence to a Traditional Dietary Pattern: A Cross-Sectional Study among Adults in Lebanon doi:10.3390/nu8070432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Marta Stelmach-Mardas and Jarosaw Walkowiak Dietary Interventions and Changes in Cardio-Metabolic Parameters in Metabolically Healthy Obese Subjects: A Systematic Review with Meta-Analysis doi:10.3390/nu8080455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Nikul K. Soni, Alastair B. Ross, Nathalie Scheers, Otto I. Savolainen, Intawat Nookaew, Britt G. Gabrielsson and Ann-Sofie Sandberg Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice doi:10.3390/nu8090543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 iv About the Special Issue Editor Catherine M. Phillips is a Senior Research Fellow and Principal Investigator in the HRB funded Centre for Health and Diet Research, with joint appointments at University College Dublin and University College Cork, Ireland. Following a BSc. (Hons) in Biochemistry from University College Dublin and a Ph.D. in Clinical Medicine from Trinity College Dublin Dr. Phillips research interests have spanned investigation of the genetic and lifestyle determinants of both metabolic and mental health. Her current research interests focus on the role of circulating biomarkers, diet and body composition in the context of intergenerational and lifecourse health. v Preface to ”Metabolically Healthy Obesity” This book, compiled from a Special Issue of the journal Nutrients, demonstrates the wide spectrum of current research efforts underway internationally which aim to advance our understanding of the role of biological, genetic, dietary and lifestyle factors as determinants of metabolically healthy obese (MHO) phenotypes. Included are 15 articles, with contributions from South Africa, Canada, China, Colombia, Lebanon as well as several countries of the European Union. Comprising original research articles based on observational and intervention studies in humans and animal models, narrative reviews and a systematic review and meta-analysis these contributions describe the current state of the art and illustrate the breadth of cutting edge research underway in this field. The evidence suggests that MHO is a transient phenotype. While transitions between phenotypes over time may account for disparities in both their reported prevalence and risk of developing cardiometabolic disease or mortality, characterisation of the factors which distinguish those who progress to or maintain MHO from those who transition from MHO to metabolically unhealthy obesity is important as it may uncover potential intervention targets. Both Zheng et al., and Muoz-Garach et al., examine MHO stability, the former in the context of investigating the impact of weight change, whereas in the latter paper they analyze responsiveness to traditional lifestyle recommendations and bariatric surgery. The use of biomarkers to improve our understanding of the biological mechanisms underpinning MHO is highlighted. Allam-Ndoul et al. employ a metabolomics approach to investigate differences in plasma metabolomic profiles between normal weight and overweight/obese individuals, with or without metabolic syndrome (MetS). Bermdez-Cardona and colleagues determine fatty acid profiles in obese youth with and without MetS. The role of gut microbiota as a determinant of MHO and how dietary medium chain triglycerides can ameliorate metabolic health via their capacity to improve both the intestinal ecosystem and permeability is discussed by Rial et al. Pujia et al., investigate whether a difference in fasting fat utilization exists between overweight/obese individuals with a favorable cardiovascular risk profile and those with MetS and Type 2 diabetes (T2DM). Two studies focus on blood pressure. Yang et al., explore associations between BMI and mortality in hypertensive adults. Zhang and colleagues investigate fasting ghrelin concentrations during a high-salt diet among non-obese and normotensive subjects. Nguyen and co-workers focus on MHO in combination with human immunodeficiency virus (HIV). In a sample of HIV infected people recruited across primary care facilities in South Africa they assess the distribution of body size phenotypes in people with HIV infection overall and according to antiretroviral therapy, diagnosed duration of the infection and CD4 count. Animal studies may be particularly useful in mechanistic research. Zubira and colleagues examine the balance of hypertrophic/hyperplastic adipose tissue expansion and the metabolic profile in a high glucocorticoids mouse model. Using a mouse model of diet-induced obesity, Soni et al., examine the effect of high fat diet supplemented with marine fatty acids (eicosapentaenoic acid and docosahexaenoic acid) on skeletal muscle function. Limited and inconsistent data regards the impact of dietary interventions in human MHO exist. In a systematic review and meta-analysis Stelmach-Mardas et al., assess the effect of dietary intervention on changes in metabolic health profiles of MHO subjects. Matta et al., examine the socio-demographic correlates of MHO and investigate the independent effect of dietary patterns. Scant data regards genetic predisposition to MHO is available. Gajewska et al., investigate whether vii certain genetic backgrounds (selected functional single nucleotide polymorphisms in LEP, LEPR and ADIPOQ) are associated with changes in serum levels of their corresponding adipocytokines and weight loss in prepubertal obese children undergoing lifestyle intervention. In further analysis of the role of adipocytokines Savino et al., investigate correlations between mother and infant BMI, their serum leptin values and breast milk leptin concentration in early infancy. This is important as increasing evidence suggests that early life exposure to a range of environmental factors, including nutrition for example, plays a critical role in defining offspring health, both in childhood and in later life. According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, transient environmental exposures during critical periods of development (such as the pre-conceptional, fetal and early infant phases of life) can alter normal physiology and have a persistent impact on metabolism and gene expression thereby influencing offspring phenotype and disease risk in later life. The contributions presented here illustrate that a great body of research regarding obesity- associated metabolic health phenotypes has been performed to date. However it is clear that much remains to be done. These contributions also serve to identify gaps and new avenues which warrant further investigation, particularly with respect to life course epidemiology based on the DOHaD hypothesis and whether risk stratification of obese individuals based on their metabolic health status may offer new opportunities for more personalised approaches in diagnosis, intervention and treatment. Finally I would like to acknowledge the excellent work of the authors and reviewers, their time and contributions have made this book possible. Catherine Phillips Special Issue Editor viii Article Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals Arturo Pujia 1 , Carmine Gazzaruso 2 , Yvelise Ferro 1 , Elisa Mazza 1 , Samantha Maurotti 1 , Cristina Russo 1 , Veronica Lazzaro 3 , Stefano Romeo 1,4 and Tiziana Montalcini 1, * 1 Department of Medical and Surgical Science, University Magna Grecia, Catanzaro 88100, Italy; pujia@unicz.it (A.P.); yferro@unicz.it (Y.F.); elisamazza@inwind.it (E.M.); samabiotec@yahoo.it (S.M.); cristina_russo_cr@libero.it (C.R.); romeo@unicz.it (S.R.) 2 Clinical Institute “Beato Matteo”, Vigevano 27029, Italy; c.gazzaruso@gmail.com 3 Department of Health Science, University Magna Grecia, Catanzaro 88100, Italy; veronicalazzaro09@gmail.com 4 Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg 40530, Sweden * Correspondence: tmontalcini@unicz.it; Tel.: +39-961-369-5172; Fax: +39-961-369-7223 Received: 29 September 2015; Accepted: 8 December 2015; Published: 4 January 2016 Abstract: The mechanisms underlying the change in phenotype from metabolically healthy to metabolically unhealthy obesity are still unclear. The aim of this study is to investigate whether a difference in fasting fat utilization exists between overweight/obese individuals with a favorable cardiovascular risk profile and those with Metabolic Syndrome and Type 2 diabetes. Furthermore, we sought to explore whether there is an association between fasting fat utilization and insulin resistance. In this cross-sectional study, 172 overweight/obese individuals underwent a nutritional assessment. Those with fasting glucose ě 126 mg/dL or antidiabetic treatment were considered to be diabetics. If at least three of the NCEP criteria were present, they had Metabolic Syndrome, while those with less criteria were considered to be healthy overweight/obese. An indirect calorimetry was performed to estimate Respiratory Quotient, an index of nutrient utilization. A lower Respiratory Quotient ( i.e. , higher fat utilization) was found in healthy overweight/obese individuals than in those with Metabolic Syndrome and Type 2 diabetes (0.85 ̆ 0.05; 0.87 ̆ 0.06; 0.88 ̆ 0.05 respectively, p = 0.04). The univariate and multivariable analysis showed a positive association between the Respiratory Quotient and HOMA-IR (slope in statistic (B) = 0.004; β = 0.42; p = 0.005; 95% Confidence interval = 0.001–0.006). In this study, we find, for the first time, that the fasting Respiratory Quotient is significantly lower (fat utilization is higher) in individuals who are metabolically healthy overweight/obese than in those with metabolically unhealthy obesity. In addition, we demonstrated the association between fat utilization and HOMA-IR, an insulin resistance index. Keywords: obesity; nutrition assessment; fat utilization; Metabolic Syndrome; metabolically unhealthy Obesity; diabetes 1. Introduction Epidemiological research established that overweight and obese individuals do not always show high rates of cardiovascular diseases (CVD) and mortality [ 1 , 2 ]. Those without dyslipidemia, insulin resistance, and hypertension are characterized by a low risk, despite the presence of an elevated body mass index (BMI) [ 3 ]. However, this phenotype seems to be a transient state [ 4 , 5 ] since a high risk of developing Type 2 diabetes mellitus (T2DM) has been demonstrated in those who maintain an unhealthy lifestyle over time [ 5 ]. The mechanism underlying the switch in phenotype from Nutrients 2016 , 8 , 2 1 www.mdpi.com/journal/nutrients Nutrients 2016 , 8 , 2 the metabolically healthy status to T2DM is still unclear. Obesity, inflammation, and worsening of insulin resistance are recognized as important risk factor in the pathogenesis of diabetes [ 6 , 7 ] but other mechanisms could play a role. A high fat (HF) diet results in an increase in β -oxidation [ 8 ]. However, other investigations demonstrated a reduction in β -oxidation [ 9 – 16 ]. These studies are not conflicting because the mechanisms described above could be sequential (first it increases and then, it decreases), leading to the switch from a metabolically healthy but overweight/obesity status to T2DM. In this regard, it is well known that nutrient utilization can be assessed with Indirect Calorimetry by measuring the ratio between carbon dioxide production and oxygen consumption (Respiratory Quotient (RQ)) [ 17 ]. Some investigations have demonstrated that subjects who tend to burn less fat have an increased RQ value [ 18 , 19 ]. High RQ is associated with a high rate of subsequent weight gain [ 20 ]. Recently, a high post-absorptive RQ was associated with hypertension [ 21 ] and increased Carotid Intima-Media Thickness (CIMT), a well-known predictor of cardiovascular events [ 22 , 23 ] in individuals with obesity [ 24 ]. Furthermore, fasting RQ is higher in individuals with obesity and hypertriglyceridemia [ 25 ] and in overweight/obese individuals with cardiac remodelling than in those who are just obese [26]. In this study, we sought to investigate whether a difference in RQ (and thus, in fat utilization) exists between overweight/obese individuals with a favorable cardiovascular risk profile and those with Metabolic Syndrome (MS) and T2DM, and whether RQ is associated with insulin resistance. This investigation could be useful to hypothesize the mechanisms underlying the progression from a metabolically healthy but overweight/obese phenotype towards metabolically unhealthy obesity and T2DM, and probably to distinguish subjects who will be at a high risk for T2DM and cardiovascular diseases. 2. Methods In this cross-sectional study, the population consisted of white overweight/obese subjects who were undergoing health-screening tests at our outpatient nutrition clinic. All the participants were over 45 years old with a BMI of more than 24.9. Participants underwent a medical interview and the nutritional assessment to verify if there had been any changes in their food habits or if they followed a special diet or used any dietary supplements in the three months prior to our tests. We enrolled consecutively only those who had not performed these actions. All enrolled individuals had the same diet, determined by nutritional intake assessment, i.e. , a solid-food diet that supplied 50%–55% of the calories as carbohydrate, 18%–20% as protein, and no more than 30% as fat. All patients included in the study were not suffering from any diseases (like chronic obstructive pulmonary disease, thyroid dysfunction, cancer, congestive heart failure, myocardial infarction, stroke) and did not take any drug (anti-obesity medications, psychotropic drugs and chronotropic agents)which could affect respiratory gas exchange or had debilitating diseases known to affect blood pressure or plasma glucose or lipid concentrations (like stage 2–5 chronic kidney disease and end stage liver failure) as determined by medical history, a physical examination, and laboratory tests. Furthermore, we assessed the presence of the known classical cardiovascular (CV) risk factors, MS presence and anthropometric characteristics. The following criteria were used to define the distinct CV risk factors: diabetes: fasting blood glucose ě 126 mg/dL or antidiabetic treatment; hyperlipidemia: total cholesterol >200 mg/dL and/or triglycerides >200 mg/dL or lipid lowering drugs use; hypertension: systolic blood pressure ě 130 mmHg and/or diastolic blood pressure ě 85 mmHg or antihypertensive treatment; overweight: 25 kg/m 2 ď BMI < 30 kg/m 2 ; obesity: body mass index (BMI) ě 30 kg/m 2 ; smoking: a current smoker who has smoked more than 100 cigarettes in their lifetime and smokes cigarettes every day or some days [27,28]. The selection criteria for MS individuals were based on the National Cholesterol Education Program’s (NCEP) Adult Treatment Panel III report (ATP III). Individuals with 0–2 cardiometabolic abnormalities were identified as having a metabolically healthy but overweight/obese phenotype, while those with at least three or more abnormalies were identified as having MS [ 29 ]. Furthermore, all participants underwent the instrumental evaluation of the carotid intima-media thickness (CIMT). 2 Nutrients 2016 , 8 , 2 Therefore, in this study we enrolled 172 overweight/obese subjects, categorized into the following three groups: healthy overweight/obese (with maximum two NCEP abnormalities and without T2DM); MS (with three or more NCEP abnormality and without T2DM) and T2DM (only those with fasting glucose ě 126 mg/dL or antidiabetic treatment). Written informed consent was obtained. The protocol was approved by local ethic committee at the University Hospital (projects codes 2013-1/CE). The investigation conforms to the principles outlined in the Declaration of Helsinki. 2.1. Blood Pressure Measurement The measurement of the systemic blood pressure (systolic blood pressure (SBP) and diastolic blood pressure (DBP)) of both arms was obtained by an auscultatory blood pressure technique with aneroid sphygmomanometer. Clinic BP was obtained in supine patients, after 5 min of quiet rest. A minimum of three BP readings were taken using an appropriate BP cuff size (the inflatable part of the BP cuff covered about 80 percent of the circumference of upper arm) as previously described [ 30 ]. 2.2. Biochemical Evaluation Venous blood was collected after fasting overnight into vacutainer tubes (Becton & Dickinson, Plymouth, UK) and centrifuged within 4 h. Serum glucose, total cholesterol, high density lipoprotein (HDL)-cholesterol, and triglycerides were measured with enzymatic colorimetric test. Low-density lipoprotein (LDL) cholesterol level was calculated by the Friedewald formula: total cholesterol—HDL cholesterol—(triglycerides/5). Plasma insulin concentration was determined by radioimmunoassay. We calculated Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) by the following formula: HOMA-IR “ Fasting blood glucose p mg { dL q ˆ insulin p U { mL q{ 405 Quality control was assessed daily for all determinations. 2.3. Anthropometric Measurements All tests were performed after a 12 h overnight fast. Body weight was measured with a calibrated scale with the subjects lightly dressed, subtracting the weight of clothes. Height was measured with a wall-mounted stadiometer (TANITA, Middlesex, UK). BMI was calculated with the following formula: weight (kg)/height (m) 2 . Waist circumferences and hip circumferences (WC and HC) were measured with a nonstretchable tape over the unclothed abdomen at the narrowest point between costal margin and iliac crest at the level of the widest diameter around the buttocks, respectively [ 31 ]. Bioelectrical impedance analysis (BIA) (BIA-101, Akernsrl, Florence, Italy) was performed to estimate the percentage of Total Body Water (TBW), Fat Mass (FM), Muscle Mass (MM), total Fat-Free Mass (FFM) [32]. 2.4. Dietary Intake Assessment The participant’s nutritional intake was calculated using nutritional software MetaDieta 3.0.1 (Metedasrl, San Benedetto del Tronto, Italy). Dietary intake data comprised a 24-h recall and a seven-day diet record. The 24-h recall was collected via an interview by a dietitian who used images associated with a comprehensive food list in the program. All participants were also given a food diary, measuring sheet with life-size images of a spoon, cup and bottle sizes for food diaries. The INRAN (National Institute of Food Research) 2000 and IEO (European Institute of Oncology) 2008 database serves as the source of food composition information in the program. The data was entered by dietitians into the program. All foods are assigned a unique code which allows categorization of foods into food groups. The resulting database was exported into SPSS (IBM Corporation, New York, NY, USA) for analysis. 3 Nutrients 2016 , 8 , 2 2.5. RQ Assessment—Indirect Calorimetry RQ and the Resting Energy Expenditure (REE) were measured by Indirect Calorimetry using the open circuit technique (Viasys Healthcare, Hoechberg, Germany). All tests were performed after fasting overnigh, between hours of 7 a.m. and 8:30 a.m. after 48 h abstention from exercise, in a sedentary position. The participant rested quietly for 30 min in an isolated room at a controlled temperature (21–24 ̋ C). Respiratory gas exchange was measured within a canopy circuit for at least 30 min, until steady state was achieved. The calorimeter quantifies the volume of O2 inspired and CO2 expired by the subject. Resting Energy Expenditure is calculated by the Weir formula. RQ was calculated as CO2 production/O2 consumption. Criteria for a valid measurement was at least 15 min of steady state, with less than 10% fluctuation in minute ventilation and oxygen consumption and less than 5% fluctuation in RQ [26,33]. 2.6. Carotid Arteries Assessment The participants underwent B-mode ultrasonography of the extracranial carotid arteries by use of a high-resolution ultrasound instrument (Toshiba Medical Systems Corporation, model TUS-A500, 1385, Shimoishigami, Otawara-Shi, Tochigi, Japan). We used a 5- to 12-MHz linear array multifrequency transducer. All the examinations were performed by the same ultrasonographer blinded to clinical information with patients in the supine position. ECG leads were attached to the ultrasound recorder for on-line continuous heart rate monitoring. The right and left common (CCA) and internal carotid arteries (including bifurcations) were evaluated with the head of the subjects turned away from the sonographer and the neck extended with mild rotation. The IMT, defined as the distance between intimal-luminal interface and medial—adventitial interface, was measured as previously described [ 24 ]. In posterior approach and with the sound beam set perpendicular to the arterial surface, 1 cm from the bifurcation, three longitudinal measurements of IMT were completed on the right and left common carotid arteries far-wall, at sites free of any discrete plaques. The mean of the three right and left longitudinal measurements was then calculated. Then, we calculated and used for statistical analysis the mean CIMT between right and left CCA. The coefficient variation of the methods was 3.3%. 3. Statistical Analysis Data is reported as mean ̆ SD. Thirty subjects for each group are required to detect a significant difference of RQ greater than 2% (21–26) with 80% power on a two-sided level of significance of 0.05. A chi-square test was performed to analyze the prevalence of the cardiovascular risk factors and medications. ANOVA was performed to compare the means between groups with a Fisher’s LSD test as a post-hoc analysis. REE and RQ values were eventually adjusted according to the difference in FFM between groups or if RQ and REE correlated with FFM. The Pearson’s correlation was used to identify the variables correlated with RQ given that the continuous variables were normally distributed. We analyzed the correlation with the following variables: REE, FFM, age, BMI, WC, glucose, LDL, HDL, triglycerides, PAS, PAD, HOMA-IR. Stepwise multivariable linear regression analysis was used to test the association between RQ and the variables selected among those correlated with RQ in the univariate analysis, with p < 0.1. When we tested the association with HOMA-IR and cardiometabolic risk factors, glucose was excluded since it was considered as part of HOMA-IR. Significant differences were assumed to be present at p < 0.05 (two-tailed). All comparisons were performed using SPSS 20.0 for Windows (IBM Corporation, New York, NY, USA). 4. Results Among the participants, we enrolled 80, 58, and 34 individuals who were overweight/obese, with MS and Type 2 Diabetes, respectively. Since we did not find any difference of RQ between gender and between individuals taking medications or not (data not shown) we presented the data altogether. 4 Nutrients 2016 , 8 , 2 The demographic and anthropometric characteristics, the prevalence of cardiovascular risk factors, and medications use of the population are indicated in Table 1. Healthy overweight/obese had a lower RQ than those with MS and Type 2 diabetes ( p = 0.04; ANOVA, Table 2). In particular, healthy overweight/obese had a lower RQ than MS ( p = 0.04; post-hoc analysis) and a lower RQ than T2DM ( p = 0.03; post-hoc analysis; Table 2), respectively. FFM did not differ between groups ( p = 0.92). Furthermore, RQ and FFM (as absolute value) did not correlate ( r = 0.11 and p = 0.27). As expected, CIMT were significantly higher in T2DM than in MS ( p = 0.03; post-hoc analysis) and the healthy overweight/obese ( p = 0.02; post-hoc analysis). Table 3 shows the factors significantly associated with RQ in the univariate analysis, which were the following: HOMA-IR, glucose, triglycerides, SBP. In the multivariable analysis, RQ remained still associated with HOMA-IR, while triglycerides and SBP were not associated (Table 4). 5. Discussion In this investigation, we find that fasting RQ, an index of nutrient utilization assessed by indirect calorimetry, is significantly lower in individuals with metabolically healthy overweight/obesity than in those with MS and T2DM. This suggests that individuals who are healthy overweight/obese are still able, to some extent, to utilize fat in the fasting state while fat utilization is significantly reduced in individuals with unhealthy obesity (Table 2). These results could help to hypothesize that new factors are involved in the pathogenesis of T2DM and potential new therapeutic goals exist. Furthermore, in this population, we demonstrated the association between RQ and HOMA-IR, which is widely utilized as an insulin resistance index (Table 4). This result could have important implications in predicting diabetes, which must be confirmed by longitudinal studies. The mechanisms underlying the switch in phenotype from healthy overweight/obese to T2DM are still unknown and our study was not designed to investigate these mechanisms. However, our study may be useful in generating intriguing hypotheses. Whether [ 34 , 35 ] or not [ 36 – 39 ] increase in fatty acid β -oxidation leads to insulin resistance is still a subject of debate. There is evidence that obesity-associated glucose intolerance might develop from an overload of fatty acid in muscle mitochondria [ 40 ]. It has been demonstrated that the excessive availability of fatty acids may exert an insulin-desensitizing action in muscle mitochondria [ 8 ]. Furthermore, it has been demonstrated that a HF diet and/or obesity can increase the expression of several β -oxidative enzymes [ 41 ] and reduce RQ [ 8 ]. It is interesting that these events precede the onset of insulin resistance [ 8 ]. Our findings are in line with these studies since we find that individuals who are metabolically healthy overweight/obese have, to some extent, a greater ability to burn fat (lower RQ) in comparison to those with MS and T2DM. However, it has also been demonstrated that an unhealthy lifestyle, including HF feeding and the absence of physical activity, favors incomplete β -oxidation caused by the mismatch between β -oxidation and tricarboxylic acid cycle activity, contributing to mitochondrial damage [ 41 , 42 ]. Incomplete fatty acid oxidation also facilitates the production of reactive oxygen species (ROS) which can cause damage to mitochondrial enzymes [ 42 ]. Furthermore, the production of ROS represents a common pathway in the cascade of events that finally results in β -cell failure [ 43 ]. Consequently, as confirmed by other investigations, both glucose-tolerance and fat oxidation are decreased [ 9 – 11 , 44 – 46 ]. Together these studies lead us to hypothesize that a reduction in fatty acid oxidation is achieved over time, probably in the context of an unhealthy lifestyle. The significant difference of RQ (of fasting fat utilization) between metabolically healthy but overweight/obese phenotype, with MS and T2DM individuals may confirm this mechanism. 5 Nutrients 2016 , 8 , 2 Table 1. Demographic, anthropometric and clinical characteristics of the population. Variables Overweight/Obese (OO) ( n = 80) Metabolic Syndrome (MS) ( n = 58) T2 Diabetes (T2DM) ( n = 34) P ANOVA p Post-Hoc Analysis Females (%) 31.3 34.5 35.3 0.63 / Age (years) 56 ̆ 10 58 ̆ 9 62 ̆ 10 0.016 OO vs. T2DM 0.004 Weight (Kg) 83 ̆ 17 87 ̆ 21 85 ̆ 20 0.505 / BMI (Kg/m 2 ) 33 ̆ 6 34 ̆ 7 34 ̆ 6 0.514 / WC (cm) 102 ̆ 14 106 ̆ 15 108 ̆ 13 0.120 / HC (cm) 109 ̆ 15 110 ̆ 12 110 ̆ 11 0.905 / SBP (mmHg) 122 ̆ 11 133 ̆ 15 130 ̆ 13 <0.001 OO vs. MS < 0.001 OO vs. T2DM 0.003 DBP (mmHg) 78 ̆ 8 80 ̆ 11 77 ̆ 9 0.161 / Glucose-mg/dL (mmol/L) 91 ̆ 9 (5.06 ̆ 0.5) 100 ̆ 10 (5.56 ̆ 0.5) 130 ̆ 45 (7.22 ̆ 2.5) <0.001 OO vs. MS 0.019 OO vs. T2DM < 0.001 MS vs. T2DM < 0.001 Insulin-mU/L (pmol/L) 16 ̆ 8 (114.7 ̆ 57) 23 ̆ 20 (164.9 ̆ 143) 35 ̆ 26 (250.9 ̆ 186) 0.039 OO vs. T2D 0.012 HOMA-IR 3.7 ̆ 2 6 ̆ 5 12 ̆ 11 0.004 OO vs. T2DM 0.001 MS vs. T2DM 0.017 TotCholesterol-mg/dL (mmol/L) 199 ̆ 38 (5.14 ̆ 0.98) 213 ̆ 42 (5.5 ̆ 1.09) 195 ̆ 47 (5.04 ̆ 1.2) 0.055 OO vs. MS 0.042 MS vs. T2DM 0.037 HDL (mmol/L) 1.52 ̆ 0.41 1.16 ̆ 0.36 1.37 ̆ 0.44 <0.001 OO vs. MS < 0.001 OO vs. T2DM 0.017 MS vs. T2DM 0.046 LDL (mmol/L) 3.18 ̆ 0.83 3.39 ̆ 0.96 2.97 ̆ 1.06 0.141 / Triglycerides (mmol/L) 91 ̆ 28 (1.03 ̆ 0.32) 201 ̆ 81 (2.27 ̆ 0.91) 151 ̆ 85 (1.70 ̆ 0.96) <0.001 OO vs. MS < 0.001 OO vs. T2D < 0.001 MS vs. T2D < 0.001 Prevalence Hypertension (%) 12 26 52 0.001 / Dyslipidemia (%) 19 29 30 0.129 / Smokers (%) 38 46 24 0.390 / Antidiabetic agents (%) 0 0 56 <0.001 / Antihypertensive agents (%) 0 0 56 <0.001 / Lipid lowering agents (%) 0 0 44 <0.001 / Legend: BMI, body mass index; DBP, diastolic blood pressure; HC, hip circumferences; HDL, high density lipoprotein; HOMA IR, Homeostasis Model Assessment of Insulin Resistance; LDL, low density lipoprotein; SBP, systolic blood pressure; Tot Cholesterol, total cholesterol; WC, Waist circumferences. 6 Nutrients 2016 , 8 , 2 Table 2. Respiratory quotient, resting energy expenditure, body composition, and carotid intima-media thickness according to groups (Overweight/Obese, with Metabolic Syndrome, with Type 2 Diabetes Mellitus). Variables Overweight/Obese (OO) ( n = 80) Metabolic Syndrome (MS) ( n = 58) T2 Diabetes (T2DM) ( n = 34) P ANOVA p Post-Hoc Analysis REE (FFM adjusted; kcal) 1371 ̆ 33 1392 ̆ 42 1383 ̆ 45 0.93 / RQ 0.85 ̆ 0.05 0.87 ̆ 0.06 0.88 ̆ 0.05 0.042 OO vs. MS 0.044 OO vs. T2DM 0.033 TBW (%) 45 ̆ 10 47 ̆ 9 47 ̆ 8 0.596 / ECW (%) 31 ̆ 15 32 ̆ 14 37 ̆ 14 0.272 / FFM (%) 59 ̆ 12 61 ̆ 12 61 ̆ 10 0.707 / MM (%) 38 ̆ 8 40 ̆ 8 39 ̆ 9 0.665 / FM (%) 36 ̆ 9 36 ̆ 8 36 ̆ 8 0.943 / FFM (%) 59 ̆ 12 61 ̆ 12 61 ̆ 10 0.707 / FFM(kg) 50.4 ̆ 18 52.4 ̆ 25 51.8 ̆ 18 0.92 / CIMT (mm) 0.7 ̆ 0.2 0.7 ̆ 0.2 0.8 ̆ 0.2 0.054 OO vs. T2D 0.024 MS vs. T2D 0.038 Legend: CIMT, carotid intima-media thickness; ECW, extracellular water; FFM, free fat mass; FM, fat mass; MM, muscle mass; REE, resting energy expenditure; RQ, respiratory quotient; TBW, total body water. Table 3. Pearson correlation-factors correlated to respiratory quotient. Variable Correlation Parameters Age REE BMI WC FFM HOMA-IR Glucose LDL Triglycerides HDL SBP DBP RQ r 0.07 0.04 ́ 0.03 0.02 0.92 0.42 0.16 ́ 0.03 0.19 ́ 0.11 0.18 0.08 p 0.35 0.53 0.65 0.79 0.27 0.005 0.03 0.62 0.01 0.13 0.01 0.25 Legend: BMI, body mass index; DBP, diastolic blood pressure; FFM, free fat mass; HDL, high density lipoprotein; HOMA IR, Homeostasis Model Assessment of Insulin Resistance; LDL, low density lipoprotein; REE, resting energy expenditure; RQ, respiratory quotient; SBP, systolic blood pressure; WC, Waist circumference. 7 Nutrients 2016 , 8 , 2 Table 4. Multivariate linear regression analysis—factors associated with respiratory quotient. Dependent Variable RQ B SE β t p 95% C.I. Lower Limit Upper Limit HOMA-IR 0.004 0.001 0.42 2.98 0.005 0.001 0.006 Triglycerides 0.001 0.001 0.20 1.37 0.17 ́ 0.002 0.002 SBP 0.001 0.001 0.05 0.34 0.73 ́ 0.001 0.001 Legend: RQ, respiratory quotients; HOMA-IR, Homeostasis Model Assessment of Insulin Resistance; SBP, systolic blood pressure. Furthermore, it is well recognized that despite the substantial research efforts in the last 10–15 years, many individuals unavoidably progress to T2DM [ 47 ] thus, longitudinal studies are needed to clarify the eventual role of RQ in predicting the risk of diabetes. Additional studies are also needed to find appropriate intervention (dietetic, pharmacological) to maintain the healthy phenotype by increasing fat oxidation [48]. In this study, some strengths and weaknesses must be pointed out. For some researchers, it is important to consider HOMA-IR to define metabolically healthy obese individuals [ 49 ]. However, at present there is a lack of consensus on this definition [ 50 – 52 ]. According to previous investigations, we used the NCEP ATP III criteria to define individual who were “metabolically healthy” [ 53 , 54 ], taking the CVD risk into account [ 55 ]. Our study was limited by cross-sectional design, thus, it is impossible to infer causality. Nevertheless, cross-sectional studies indicate associations that may exist and are therefore useful in generating hypotheses for future research. In addition, in our study the statistical analysis is robust and adequate. Our results were not purely random as established by previous investigations [ 9 – 16 , 20 – 26 ] and were confirmed by multiple statistical analyses. The investigation was carried out on representative samples of the population which originates from a Mediterranean context, potentially increasing knowledge on this issue from a geographical perspective. Finally, our results are in line with those of other authors who demonstrated the association between metabolic inflexibility, which is independently associated with fasting RQ, and insulin resistance [ 56 ]. However, to our knowledge, this is the first time that a difference in fasting RQ has been found between individuals who are metabolically healthy but overweight/obese who have MS and T2DM. 6. Conclusions We find that fasting fat utilization is significantly lower in individuals who are metabolically healthy overweight/obese than in those who are metabolically unhealthy. These results can help to hypothesize the factors involved in the pathogenesis of T2DM. Acknowledgments: Acknowledgments: This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector. Author Contributions: Author Contributions: Tiziana Montalcini, Arturo Pujia and Carmine Gazzaruso were responsible for study des